Poset topology, Koszul duality and new criteria for shellability

Bérénice Delcroix-Oger joint works with Clément Dupont(IMAG), Hélène Han (ENS Saclay), Matthieu Josuat-Vergès (IRIF) et Lucas Randazzo (Nomadic Labs)

Rencontres 2025 de topologie algébrique Marseille, Octobre 2025

Outline

- Poset topology
- 2 Shellability and operads [Fresse, Vallette]
- 3 Parking posets (with L. Randazzo, M. Josuat-Vergès and H. Han)

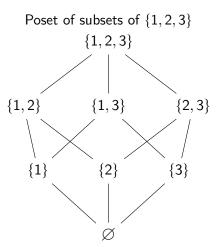
Poset topology

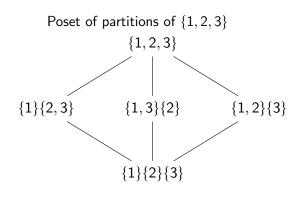
Outline

- Poset topology
- Shellability and operads [Fresse, Vallette]
- Parking posets (with L. Randazzo, M. Josuat-Vergès and H. Han)

Hasse diagram of a poset (=partially ordered set)

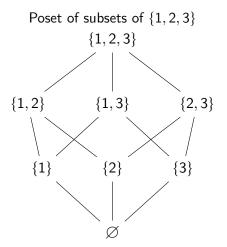
A poset is a set S endowed with a partial order. We represent its **Hasse diagram** as a graph whose set of vertices is S and whose edges are covering relations in the poset.

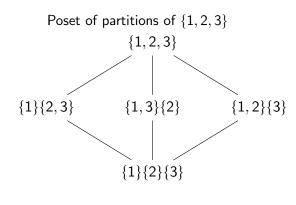




Möbius number of an interval [Rota, 1964]

When the poset has a maximum $(\hat{1})$ and a minimum $(\hat{0})$, it is an **interval** (or bounded poset). The **Möbius function** is defined recursively by : $\mu(x,x) = 1$ and $\mu(x,y) = -\sum_{x \leqslant z < y} \mu(x,z)$. The **Möbius number** of the poset is $\mu(P) := \mu(\hat{0},\hat{1})$.



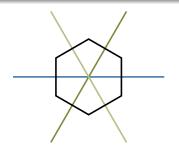


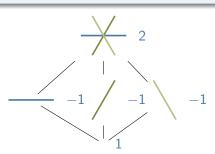
Link with hyperplane arrangement

What is the point of computing the Möbius number of a poset ?

Theorem (Zaslavsky's, 1975)

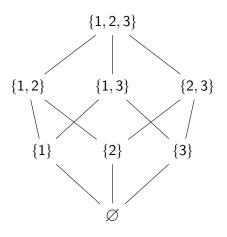
number of k-regions
$$= \sum_{\substack{I \leqslant J \in L(\mathcal{A}) \\ \dim(I) = k}} |\mu(I, J)|,$$

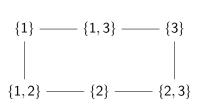




Cohomology of an interval

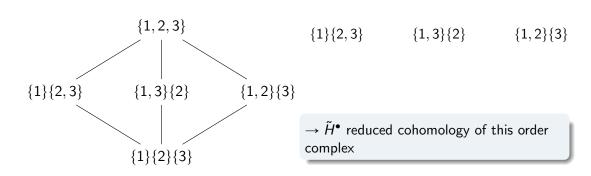
Möbius number of an interval = Euler characteristic of its order complex (nerve of $P\setminus\{\hat{0},\hat{1}\}$).





Cohomology of an interval

Möbius number of an interval = Euler characteristic of its order complex (nerve of $P\setminus\{\hat{0},\hat{1}\}$).



Another definition (in terms of relative cohomology)

We can also consider this alternative cochain complex

$$c^{k}(P) = \{x_{0} < \ldots < x_{k} \in P | a_{0} \in \min(P), a_{k} \in \max(P)\},\$$

endowed with the following differential:

$$d[\gamma] = \sum_{i=1}^{n} (-1)^{i} \sum_{x_{i-1} < y < x_{i}} [\cdots < x_{i-1} < y < x_{i} < \cdots].$$

We denote by $h^{\bullet}(P)$ its cohomology. It is well defined for any poset P.

Relations between cohomologies (1)

For $n \ge 1$, when P is an interval

$$h^n(P) = \tilde{H}^{n-2}(P \setminus \{\hat{0}, \hat{1}\}).$$

When P is not an interval

We can associate to it two other cochain complexes

$$\check{c}^k(P) = \mathbb{K}.\{x_0 < \ldots < x_k | x_0 \in \min(P)\}
\hat{c}^k(P) = \mathbb{K}.\{x_0 < \ldots < x_k | x_k \in \max(P)\},$$

endowed with:

$$d[\gamma] = \sum_{i=1}^{n} (-1)^{i} \sum_{x_{i-1} < y < x_{i}} [\cdots < x_{i-1} < y < x_{i} < \cdots].$$

The associated cohomology are denoted respectively by h(P) and h(P).

Relations between cohomologies (2) $\check{h}^n(P) \simeq \bigoplus_{i \in S} \widetilde{H}^{n-1}(P_{>x}),$ $\widehat{h}^n(P) \simeq \bigoplus \widetilde{H}^{n-1}(P_{< y}),$

Cohen-Macaulayness and shellabilities

Definitions

- A poset is Cohen-Macaulay if it has the homotopy type of a wedge of spheres of same dimensions. Then it has a unique non trivial reduced cohomology group.
- A poset is **shellable** if there is a linear order on its facet F_1, \ldots, F_n such that all the facets of $\left(\bigcup_{i=1}^{k-1} \langle F_i \rangle\right) \cap \langle F_k \rangle$ have dimension dim $F_k 1$. [Schläfli]

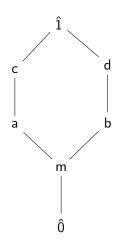
Warning!

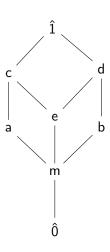
Shellability is not a topological property!

Question

How to determine whether a poset is shellable?

Two examples





EL-shellability (Edge Lexicographic Shellability) [Björner-Wachs]

An edge labelling of a bounded poset P is a map λ from the edges of the Hasse diagram E(P) (i.e. the covering relations) to \mathbb{N} .

To any maximal chain $c = \hat{0} \le x_1 \le x_2 \le ... \le x_n \le \hat{1}$ can be associated a word $\lambda(c) = \lambda(\hat{0}, x_1)\lambda(x_1, x_2)\dots\lambda(x_n, \hat{1})$. The chain is increasing if $\lambda(\hat{0}, x_1) < \lambda(x_1, x_2) < \ldots < \lambda(x_n, \hat{1}).$

Definition

An edge labelling λ is an EL-labelling if on any interval [x; y]

- there exists a unique increasing chain c
- c is minimal in the lexicographic order.

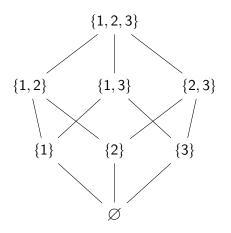
Remark:

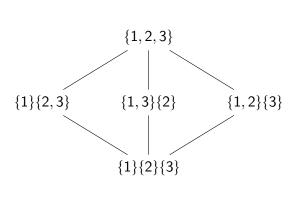
There is a weaker notion called CL-shellability in which the pairs $(c, (x_i \le x_{i+1}))$ are labelled, where c is a maximal chain from $\hat{0}$ to x_i .

EL-shellability on an example

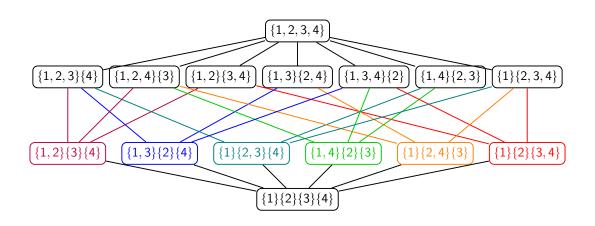
An edge labelling λ is an EL-labelling if on any interval [x; y]

- there exists a unique increasing chain c
- c is minimal in the lexicographic order.





A bigger example

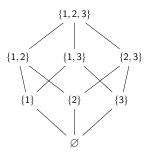


Recursive atom ordering (equivalent to CL-shellability) [Björner-Wachs] •

Definition

A bounded poset P admit a recursive atom ordering (RAO) if $\hat{0} < \hat{1}$ or if there is an ordering a_1, \ldots, a_t of the elements covering $\hat{0}$ (atoms) such that:

- For all $j \in [1; t]$, the interval $[a_j; \hat{1}]$ admits a RAO in which the atoms of $[a_j; \hat{1}]$ that belong to $[a_i; \hat{1}]$ for some i < j come first
- For all i < j, if $a_i, a_j < y$ then there is a k < j and an atom z of $[a_j; \hat{1}]$ such that $a_k < z \le y$.



Summary

CL-shellability \Longrightarrow EL-shellability \Longrightarrow shellability \Longrightarrow Cohen-Macaulay

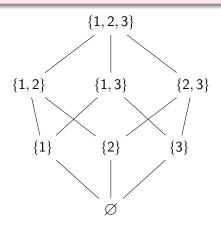
Still other kinds of shellability [Björner, Wachs, Gonzales d'Leon, ...]

Link with polytopes

Convex polytope with orientation vector \rightarrow poset

Question

On which condition on P is P the 1-skeleton of a convex polytope?



Also

- Relations poset ↔ algebras
- Intervals in the posets
- Quotient of posets by congruence relations

Shellability and operads [Fresse, Vallette]

Outline

- Poset topology
- 2 Shellability and operads [Fresse, Vallette]
- 3 Parking posets (with L. Randazzo, M. Josuat-Vergès and H. Han)

Cohomology of partition posets

Proposition (Hanlon, 81; Stanley, 82; Joyal 85)

The poset of partitions of a finite set V, $\Pi(V)$, has a unique non trivial cohomology group given by:

$$\mu(\mathsf{\Pi}(V)) = (|V| - 1)!$$

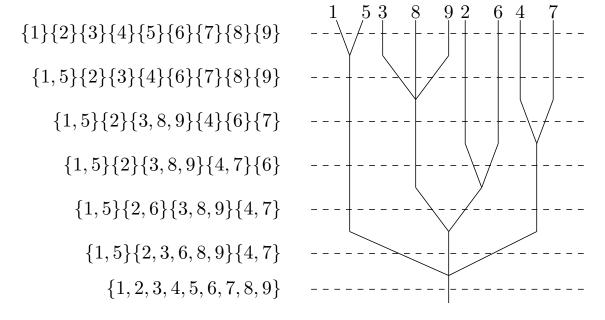
Moreover, the action of the symmetric group on this cohomology group is:

$$h^{n-1}(\Pi(V)) = \text{Lie}(V) \otimes_{\mathfrak{S}_V} \text{sgn},$$

where sgn is the signature representation.

```
\begin{split} & \text{Lie}(\{1,2\}) = \mathbb{K}.\,\{[1;2]\} \text{ with } [1;2] = -[2;1] \\ & \text{Lie}(\{1,2,3\}) = \mathbb{K}.\,\{[[1;2];3],[[1;3];2]\} \\ & \text{with } [[1;2];3] + [[2;3];1] + [[3;1];2] = 0 \text{ (Jacobi relations)} \\ & \text{Lie}(\{1,\ldots,n\}) = \mathbb{K}.\,\{[\ldots[1;\sigma(2)]\sigma(3)]\ldots\sigma(n)], \sigma \in \mathfrak{S}(\{2,\ldots,n\})\} \text{ [Reutenauer]} \end{split}
```

Levelled cobar construction [Fresse, 02]



Species

Definition [Joyal, 80s]

A set species is a functor

A linear species is a functor

 $\mathbb{F}: \mathsf{Bij} \longrightarrow \mathsf{Vect}$ (+ général)

category of vector spaces

category of finite sets and bijections -

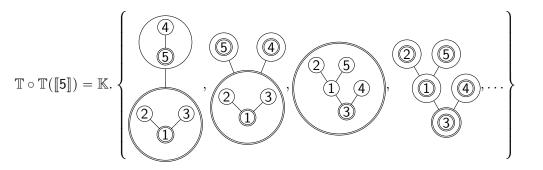
Substitution

The substitution of two species \mathbb{F} and \mathbb{G} , with $\mathbb{F}(\emptyset) = \{0\}$ is defined as:

$$(\mathbb{F}\circ\mathbb{G})(E)=\bigoplus_{\pi\in\Pi(E)}\mathbb{F}(\pi)\otimes\bigotimes_{p\in\pi}\mathbb{G}(p)$$

For instance, for $\pi = \{A, B, C\}$ with $A = \{1, 3\}$, $B = \{2\}$ and $C = \{4\}$,

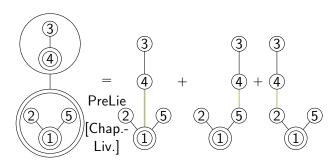
$$\mathbb{L} \circ \mathbb{L} \supseteq (B, A, C) \otimes ((2) \otimes (3, 1) \otimes (4))$$
$$= ((2), (3, 1), (4))$$



Operad

- A (symmetric) (resp. set) operad \mathcal{O} is
 - ullet a linear species (resp. set species) ${\cal O}$ with an associative composition

$$\gamma: \mathcal{O} \circ \mathcal{O} \to \mathcal{O}$$



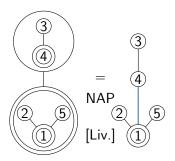
• and a unit $u : \mathbb{X} \to \mathcal{O}$, where \mathbb{X} is the singleton species $(\mathbb{X}(S) = \delta_{|S|=1}\mathbb{C})$.

We consider here connected operads: $\mathcal{P}(\emptyset) = \emptyset$ and $\mathcal{P}(\{*\}) = \{*\}$

Operad

- A (symmetric) (resp. set) operad \mathcal{O} is
 - ullet a linear species (resp. set species) ${\cal O}$ with an associative composition

$$\gamma: \mathcal{O} \circ \mathcal{O} \to \mathcal{O}$$



• and a unit $u: \mathbb{X} \to \mathcal{O}$, where \mathbb{X} is the singleton species $(\mathbb{X}(S) = \delta_{|S|=1}\mathbb{C})$.

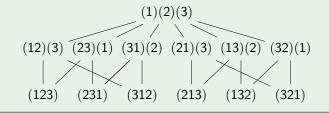
We consider here connected operads: $\mathcal{P}(\emptyset) = \emptyset$ and $\mathcal{P}(\{*\}) = \{*\}$

Decorated partition posets [Vallette, 07]

Let \mathcal{P} be a connected set operad. A \mathcal{P} -decorated partition on a finite set V is an element of $\mathbb{E} \circ \mathcal{P}$.

$$(\alpha,\eta)\leqslant (\beta,\xi) \Leftrightarrow \alpha\leqslant_{\Pi(V)}\beta, \forall A\in\alpha, \exists \nu_A\in\mathcal{P}(\beta_{|A}) \text{ s.t. } \eta_A=\nu_A\circ(\xi_B)_{B\in\beta_{|A}}.$$

Assoc = \mathbb{L} -decorated partitions on $\{1, 2, 3\}$



Theorem (Vallette, 07)

 $\mathbb{K}\mathcal{P}$ is Koszul iff the associated posets are Cohen-Macaulay. Moreover in that case,

$$h^{|V|-1}(\Pi^{\mathcal{P}}(V)) \simeq s^{n-1}(\mathbb{K}\mathcal{P})^{!}(V) \otimes_{\mathfrak{S}_{V}} \operatorname{sgn} =: \Lambda^{-1}(\mathbb{K}\mathcal{P})^{!}(V).$$

What about PBW operads? [Bellier-Millès-DO-Hoffbeck, 2021] • • •

- An operad is Koszul if and only if the associated decorated partition posets are Cohen-Macaulay.
- We have seen that there are many properties refining Cohen-Macaulayness.
- Dotsenko-Khoroshkin introduced an algorithmic criterion to determine whether an operad is Koszul: Gröbner/PBW bases.
- When decorated partition posets are CL-shellable, with a compatibility of labellings between subposets, the associated operads admits a PBW bases.
- The converse is not true in general.

Open questions on concentrations of homologies [DO-Dupont, 2025-

ArXiv: 2505.06094

- When a poset P is not bounded, the different definitions give different kinds of cohomologies.
- \hat{P} :=minimal interval containing P
- When the poset \hat{P} is CL-shellable, so are the maximal intervals in P.
- The converse is not true in general.

Question

Can we deduce from the topology of maximal intervals in P something on the topology of \hat{P} ?

Answer for decorated species

By Paul Laubié : When the operad \mathcal{P} is Koszul, it depends on whether \mathcal{P} can be written as Lie $\circ \mathcal{Q}$ or $\mathcal{Q} \circ \text{Lie}$.

ArXiv: 2510.23547

Parking posets (with L. Randazzo, M. Josuat-Vergès and H. Han)

Outline

- Poset topology
- Shellability and operads [Fresse, Vallette]
- 3 Parking posets (with L. Randazzo, M. Josuat-Vergès and H. Han)

Noncrossing partitions [Kreweras, 1972]

$$\{i_1, \ldots, i_n\}$$
 with $i_1 < \ldots < i_n \rightarrow i_1 \quad i_2 \quad \cdots \quad i_n$

Definition (Kreweras, 1972)

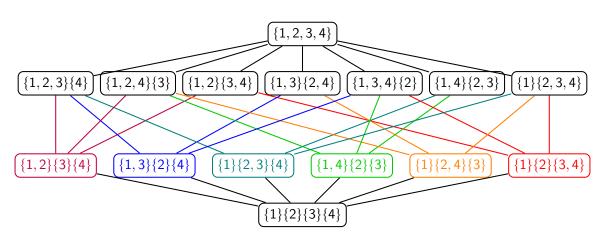
A partition
$$\pi = \{\pi_1, \dots, \pi_k\}$$
 of $\{1, \dots, n\}$ is noncrossing iff

$$\begin{cases} a < b < c < d \\ a, c \in \pi_i \\ b, d \in \pi_j \end{cases} \implies i = j$$

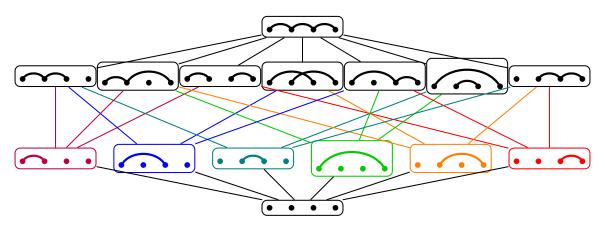
 NC_n = set of noncrossing partitions of $\{1, \ldots, n\}$

$$\rightarrow$$
 counted by Catalan numbers $\frac{1}{n+1}\binom{2n}{n}$

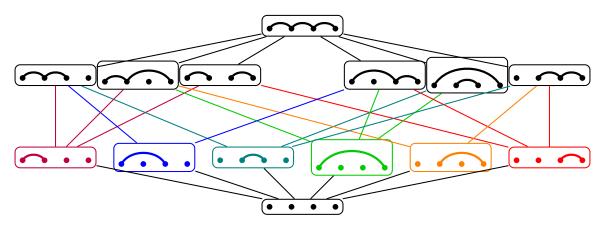
Partition posets



Partition posets



Noncrossing partition posets

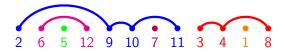


Noncrossing 2-partitions

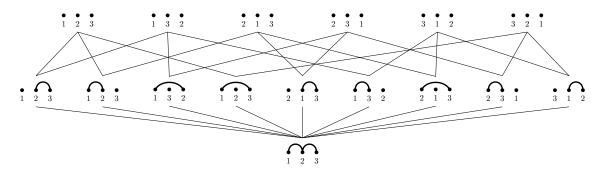
Definition (Edelman, 1980)

A n.c. 2-partition of size n is a pair $(\pi, \sigma) \in NCP_n \times \mathfrak{S}_n$ s.t.

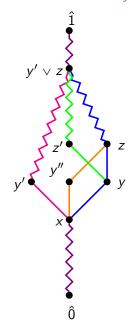
$$\begin{cases} \{b_1, \ldots, b_k\} \in \pi \\ b_1 < b_2 < \ldots < b_k \end{cases} \implies \sigma(b_1) < \sigma(b_2) < \ldots < \sigma(b_k).$$



Noncrossing 2-partition poset on 3 elements



New shellability criterion

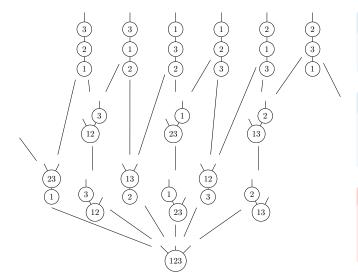


Lemma (D.O., Josuat-Vergès, Randazzo, 22)

Consider a poset P endowed for any element x with an order $<_x$ on the atoms of x. If the following condition (C) is satisfied then P is shellable, hence Cohen-Macaulay.

- (C) For any $x, y, y', z \in P$ such that $x \lessdot y \lessdot z, x \lessdot y'$, and $y' \lt_x y$, then:
 - either there exists $y'' \in P$ such that $x \lessdot y'' \lessdot z$ and $y'' \prec_x y$,
 - or there exists $z' \in P$ such that $y \lessdot z' \leqslant y' \lor z$ and $z' \lt_y z$.

Tamari-parking posets



Conjecture (DO)

Augmented Tamari-parking posets are homotopic to a sphere.

Proposition (H. Han, 24)

Tamari-parking posets are lattices. They are neither EL-shellable nor CL-shellable.

Question

What is the link between the unique cohomology group of Tamari-parking posets and Associative operad?

Thank you for your attention!