From partition posets to operadic poset
species

Bérénice Delcroix-Oger
joint work with Clément Dupont (IMAG)
and Guillaume Laplante-Anfossi (Syddansk University), Kurt Stoeckl
(Melbourne University) et Vincent Pilaud (Universitat de Barcelona)

IMAG |

INSTITUT WONTPELLIERAIN |
ALEXANDER GROTHENDIECK |,

Nantes, Thursday, March 13th 2025



Goal for today

Present an overview of two recent works based on partition posets:

o "Cellular diagonals of permutahedra” joint with G. Laplante-Anfossi
(Univ. Syddansk), Kurt Stoeckl (Univ. Melbourne) and Vincent
Pilaud (Univ. Barcelone), ArXiv : 2308.12119

@ "Lie-operads from poset cohomology” joint with C. Dupont (IMAG),
soon on ArXiv

Outline
© Decorated partition posets
@ Regions of ¢ copies of the braid arrangement and cohomology of
decorated partition posets
© Operadic poset species and its applications
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Partition posets and decorated partition posets



Posets of (set) partitions (V)

Partitions of a set V :

k
Vi, il Ve V=| |V ,VinV=Ffori+]
i=1

Partial order on set partitions of a set V:

Vi, Vi <{V,..., Vi e Vie{l,ph3je{l,k}st. VISV,

{1{2}{3H{4}

(2] (L) (23] ((LaH2E)) (a6 (132464

(11.2,314}] ({1.2,43}] ({1, 23,4} ({1,312, 4] ({1, 3.41{2}) ({1,412, 3} [{1}{2.3,4})

=t
{1,2,3,4}




Poset (relative) cohomology

To any poset P can be associated a cochain complex
ck(P) = {x0 < ... < xx € Plag € min(P), a € max(P)},
with the following differential:
n .
d[v] = Z(—l)’ Z [Xo<x1 < " <X—1<y<x <-<Xp-1 < Xp]-
i=1 Xi—1<Y<X;j
We denote by h* the cohomology of c*(P).

Remark:
When P is bounded, h"(P) = H"2(P\{0, 1}). J




Other cohomologies

By considering
EK(P) = K. {xo < ... < xk|xo € min(P)}

and
ek (P) = Kfxo < ... < xilxx € max(P)},

we get E(P) and //;(P)

For n > 1, we have

RE) s @ Fie),

x € min(P)

WPy~ @ H"(Psy),
y e max(P)



Cohomology of the partition poset

Proposition (Hanlon, 81 ; Stanley, 82 ; Joyal 85)

The partition poset M(V) has a unique (co)homology group whose
dimension is given by:

p(M(V)) = (V] -1)!
Moreover, the action of the symmetric group on this homology group is:
A" N(V)) = Lie(V) ®s,, sgn,

where sgn is the signature representation.

Lie({1,2}) = K. {[1; 2]} with [1;2] = —[2;1]

Lie({1,2,3}) = K. {[[1;2]; 3], [[1: 3] 2]}

with [[1;2]; 3] + [[2; 3]; 1] + [[3;1]; 2] = 0 (Jacobi relation)
Lie({1,...,n}) = KA[...[1;0(2)]o(3)]...0(n)],0 € 6({2,...,n})}

[Reutenauer]




What are species?

Definition (Joyal, 80s)

A set species F is a functor from Bij to Set.
A linear species L is a functor from Bij to K-Mod.
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Examples of species
e K.{(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)} (Species of
lists Assoc on {1,2,3})
o K.{{1,2,3}} (Species of non-empty sets Comm)
o K.{{1},{2},{3}} (Species of pointed sets Perm)

poig duog dued &)

Cayley trees T)
o K.{[[1,2],3],[[1,3],2]} (Species of Lie brackets Lie)

These modules are the image by species of the set {1,2,3}. All but the
last one come from linearisations of set species.




Substitution of species

Proposition
Let F and G be two species. Let us define:

(FoG)S)= P F(meGW)

wel(S) Jerm

where T1(S) runs on the set of partitions of S.

T o T [[5]]

Q ®
K. < ey
9 9 ®
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Operads
A (symmetric) operad (resp. set operad) O is
@ a linear species (resp. set species) O with an associative composition
7: 000 -0

©), ® B
- @ + @+@
PrelLie
[Chap ® @ ® @ 6
@ Liv.]. @ @

@ and a unit i : I — O, where | is the singleton species
(/(S5) = 9)5=1C).
@ To each kind of algebra is associated an operad.
Operads here will be connected : P() = & and P({}) = {x}



Operads
A (symmetric) operad (resp. set operad) O is
@ a linear species (resp. set species) O with an associative composition
7: 000 -0
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@ and a unit i : I — O, where | is the singleton species
(/(S5) = 9)51=1C).
@ To each kind of algebra is associated an operad.
Operads here will be connected : P() = & and P({*}) = {*}



Levelled (co)bar construction [Fresse, 02]
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{1,2,3,4,5,6,7,8,9}
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Decorated partition posets [Vallette, 07]

Definition
Let P be a connected set operad.

A P-decorated partition of a finite set V is an element of Comm oP.
The set of P-decorated partitions of V is endowed with the partial order

(,n) < (8,8) & a<nw) B,VA€ a,3va € P(a) st. na = vao(€s)pep,,

Assoc-decorated partitions of {1,2,3}

LEE)
NS
(12)3) @3)(1) ()2 1E) (13)@) (32)(1)

N

(123) (231) (312) (213) (132) (321)




Basics

Definition
A set operad P is

o Left-basic iff [ [, P(T) = P(S), (7)7er — v o ({7)Ter is
injective

o Right-basic iff P(1) — P(S) , v — v o ({7)Ter is injective

Examples and counter-examples
@ Perm is right-basic, but not left-basic.

@ The quadratic operad with two generators -4 and  and the following
relations is left-basic but not right-basic.

(adb)c=(adb)—c (aFb)c=(akb)—c
ak(bdc)=a—(bdc) atr(brc)=a- (bt )

@ Assoc and Comm are both left-basic and right-basic.




Decorated partition posets [Vallette, 07]

Theorem (Vallette, 07)

When P is right-basic, the linear operad KP is Koszul iff the associated

posets M7 (V) have a unique non trivial cohomology group
(Cohen-Macaulay), for any V.

Moreover, in this case, denoting by (KP)! its Koszul dual, the unique
cohomology group is given by:

AVISHAP(V)) ~ s (KP)' (V) ®s, sen =t AL (KP)' (V).
1 4 2 3 5

(1(2)(3)(4)(5)
(1)(2)(35)(4)
Associative case
(14)(2)(35) Planar levelled trees.J
(14)(235)

(14235)




Permutohedra and braid arrangements



A second example of posets : the weak Bruhat order W,

[Verma 1968|

o Covering relations, ...ab...<...

4321

e

1

321 340
/ \ 2431

231 312 7

123 \1234

4312
><4231 ><
3412
4213

ba... witha<b

1342

1243



Permutohedron = polytope whose vertices are
permutations and whose edges are covering relations in the
weak Bruhat order [Schoute 1911]




Labelling of faces of the permutohedron
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Labelling of faces of the permutohedron

3)2|1
312/ \23\1

3[1/2 2[3|1
13[2 123 2(13
1/3]2 2/1/3

123\ /12|3

12]3



Labelling of faces of the permutohedron

| 3121 | 11J412)
3 12/ \231
3|12 2131

132 123 2/18 «13542)

1)3/2 2(1/3

1|23\ /123

1)2/3
ALED!



Polytope and hyperplane arrangement

©V. Pilaud

A retenir J

Number of faces of dimension k = number of regions of dimension n — k




Braid arrangement

HEy = {0, xn) € R = )
1<i<j<n

is called the braid arrangement.




Braid arrangement and set compositions (A5°°[1)

Definition

A region of B, is a connected component of R"\ J;¢;j<, H[;. The faces
of B, are the closures of its regions and all their intersections with one of
its hyperplane. Faces are ordered by inclusion.




Braid arrangement and set compositions (A5°°[1)

Definition

A region of B, is a connected component of R"\ J;¢;j<, H[;. The faces
of B, are the closures of its regions and all their intersections with one of
its hyperplane. Faces are ordered by inclusion.

2|13 123
2(1/3
2[3]1 123
231 1)23
3121 1/3)2
3[1)2

3|12 132



Braid arrangement and set compositions (A5°°[1)

Definition

A region of B, is a connected component of R"\ J;¢;j<, H[;. The faces
of B, are the closures of its regions and all their intersections with one of
its hyperplane. Faces are ordered by inclusion.

2/13 123
2/113
2[3)1 123
231 jps 2B B2 312 321 23 23
30 14302 ERNEIERN S N N

12)3_ 123 13)2  3j12  23]1 _ 213

2 T\

3|12 13]2 123



Back to partitions
Definition

An intersection of B, is a non-empty affine subspace of R” obtained as the
intersection of some hyperplane of B,,. Intersections are ordered by

{13{2}{3} \
RN < / 0\

{11{2,3} {21{1,3} {3}{1,2}

N o

{1,2,3}




Zaslavsky's theorem

Let A be a hyperplane arrangement and Z its intersection poset.

Theorem (Zaslavsky, 75)

number of k-faces = Z (1, D),

I<JeT
dim(l)=k
where u(l,J) is the Euler characteristic (called Mobius number) of the
interval [1, J].

5
_\1/ 1\ -




Intervals and Mobius number in partition posets

{1{2}{3H{4}

(L2eHa ] ((L3Hane) (02314} ((L4H231) (241031 [{(1H2H3.4})

(11.2,3144}] (11,2, 433} ({1, 2}43,4}] ({1,312, 4}] ({1, 3.41{2}) ({1,412, 3}] [{1}{2.3.4})

W

For m = (m1,...,mk) € My, we have :

Lemma

[On,, ] ~ Mk (7, 1n,] Hl'l|7,k| pu(On,, ) = (k—1)!




Number of regions of the braid arrangement
Proposition
f(Ba) = > [ #G[Fi] - 1)!
F<G FieF

where F < G are two partitions, F with k + 1 parts and
G[F,'] = {GJ € G|GJ = F,'}.




Number of regions of the braid arrangement
Proposition
f(Ba) = > [ #G[Fi] - 1)!
F<G FieF

where F < G are two partitions, F with k + 1 parts and
G[F,'] = {GJ € G|GJ = F,'}.

Question

What happens if we consider ¢ copies of the braid arrangement ?

A



Diagonal of the permutohedron

Motivations

Compute a cellular and coherent version of the thin diagonal ¢ : x — (x, x)
of the permutohedron P

More precisely, we define a map A : P — P x P whose image is a union of
faces of P x P and homotopic to the thin diagonal.

1111

0010
0101

1010 & 01 1
~— 00 1Y

1
1y 1ot
0o

0000 oLo0 o\

0100

1000 1000

0000

Applications

Formula for coproducts, tensor product for homotopy operads and
description of cup product on Losev-Manin toric varieties.




Number of regions for 2 copies of the braid arrangement

Theorem (BDO, G. LapIante-Anfossi, V. Pilaud, K. Stoeckl)
fnk11nk21 EHH#G
F<G ig[2] peF;

where F and G are two forests of 2-coloured trees and #F; = k; + 1

fo_1(Bn2) = nl[x"]exp (2 m(;—il) (T)) [A213507]

m=1

fo(Bn?) = 2(n + 1)""2[A007334]

n

fk,n—k—l(an) = kL-I-]. (k) (k =P 1)”_k_1(n — k)k




Number of regions for ¢ copies of the braid arrangement

Theorem (BDO, G. Laplante—Anfossi, V. Pilaud, K. Stoeckl)

fnkll,,nkgl ZHH#G

F<G ie[¢] peF;

where F and G are two forests of £-coloured trees and #F; = k; + 1

) xm Im
fo-1(Bn") = nl[x"] exp (n; m(1+ (£ —1)m) (m)>

fo(Bn') = €(1+ (£ —1)n)" 2

Also

o Combinatorial description of faces of the diagonal

@ Only two operadic diagonals on the permutohedron




Operadic poset species



Cohomology of the hypertree poset

Theorem (Conjecture of Chapoton, ; proven in 0.,13)
The augmented hypertree poset ﬁ?(V) is Cohen-Macaulay and

AVI=S(HT(V)\{0,1}) = A*PreLie(V),

for a finite set S of size n.




Cohomology of the hypertree poset

Theorem (Conjecture of Chapoton, ; proven in 0.,13)
The augmented hypertree poset ﬁ?(V) is Cohen-Macaulay and

AVI=S(HT(V)\{0,1}) = A*PreLie(V),

for a finite set S of size n.

Question
Why do we find an operad here ?




Cohomology of the hypertree poset

Theorem (Conjecture of Chapoton, ; proven in 0.,13)

The augmented hypertree poset ﬁ?(V) is Cohen-Macaulay and
AVIZ(HT (V)\{0,1)) = A~ *PreLie(V),

for a finite set S of size n.

Question
Why do we find an operad here ?

Answer
Operadic poset species




Properties of the partition posets

Proposition (Folklore)
For every partition w € I1(S) we have isomorphisms of posets

o Ner(S) S N(x) and e Mar(S) S T (T

Tenr

defined by a+— {m1, T € a} and 3+ (B|7)Tex respectively.

Examples
Let S = {a, b,c,d,e, f,g} and T = {Tl, T, T3} =: T1’T2|T3, with
T = {aa ba C}v Ty = {d7e}v T3 = {fag}
or(x) = or(abcde|fg) = 12|13 =: x/7
Vx(albe|d|e|fg) = (a|bc, dle, fg) .




Composition of cochains

Let S be a finite set and 7 be a partition of S.
Denoting by Kiinneth morphisms by k, we have the following map:

¢ (N(m) ® & c*(N(T)) “B* ¢*(N(r)) @ c* (H nm)

Term Ter

P (Man(S)) ® ¢ (Man(S)) — *(M(S)).

commutativity fail) but it induces a graded operad structure on the

This does not define a differential graded operad on c¢* (associativity and
cohomology which is exactly A= Lje. |




Operadic poset species

Let P be a poset species, with a: P — I1, s.t. for any finite set S,
a(S) : P(S) — M(S) strictly increasing.
We consider

ox s Px(S)—P(x) and Po(S)= [ [ P(T

Ten

Definition
The poset species P with a, ¢, and 14 is an operadic poset species if
@ PrOa=aoypxy, ¢noa=ao”¢x

@ ¢, and 1y satisfy moreover some equivariance, unitality and
associativity axioms.

Theorem (D.O. - Dupont, 24+)

h*(P) is endowed with a structure of graded operad of K-modules.




Consequences of the construction

Theorem (D.O. - Dupont, 24+) J

h*(P) is endowed with a structure of graded operad of K-modules.

Proof: We construct a morphism
pr h*(M(7) @ X1, h*(M(T)) — h*(N(S)) for any m e M(S).

Corollary
h*(P) is equipped with morphism of graded operads a* : N1 Lie — h‘(P).J

Counter example J

The boolean posets is NOT an operadic poset species.




Other cohomologies

By considering

Ek(P) = K.{Xo <. < Xk|X0 € min(P)}

cK(P) = K{xg < ... < xk|xx € max(P)}

we obtain morphisms

pr - h*(P(m)) ® @ h*(P(T)) — h*(P(S)).

pr B (P(1) ® @ h*(P(T)) — h*(P(S)).
Proposition (D.O. - Dupont, 24+)

/vlz’(P) is a left operadic module over h*(P).
h*(P) is a right operadic module over h*(P).




A bunch of new examples

Operadic poset species P h*(P) h*(P) h*(P)

n Lie - -

n (KP)" (if Koszul) | non-trivial -

As (K As) K Com -

ne (KQ)" (if Koszul) - non-trivial

nAs (K As)' - not Cohen-Macaulay
M Perm (K pre-Lie)' - ? [?, A000312]
2-NCP ? [?, A000312] ? -

NS MetabLie - -
MLCT Graph complex ? -

HT post-Lie pre-Lie -




Wishlist
@ Study the cyclic operad structure on the cohomology.

@ Define directly the operadic poset structure in terms of nested sets
associated with the minimal building set [cf. work of B. Coron]

@ Other examples ? (for instance bidecorated partitions and bidecorated
hypertrees)




Wishlist
@ Study the cyclic operad structure on the cohomology.

@ Define directly the operadic poset structure in terms of nested sets
associated with the minimal building set [cf. work of B. Coron]

@ Other examples ? (for instance bidecorated partitions and bidecorated
hypertrees)

Thank you for your attention !



Description of intersections in terms of trees

{1L.2}{3}  {1}{2,3}

(1.3)(2) X

{1,2,3}




Description of intersections in terms of trees

{1,243}  {1}{2,3} \V/
{1,312} X
{1,2,3} //\\




Description of intersections in terms of trees

({1.2.3}, {1H{2}{3})

{1,2}{3} 02,3} \ /

{1,3}{2} A
{1,2,3} //\\




Description of intersections in terms of trees

({1.2.3}, {1H{2}{3})

{1,2}{3} 02,3} \ /

{1,3}{2}

/I\
s N

({1H{2}{3}, {1.2.3})



Description of intersections in terms of trees

({1.2.3}, {1H{2}{3})

123 (1}{2,3) \ /

(1,312 v ({1.2}{3},
A {1}1{2.3})
{1,2,3} /

({1H{2}{3}, {1.2.3})




Description of intersections in terms of trees

({1.2.3}, {1H{2}{3})

({1,243},
{1H{2.3})

L2313 \
(1.3)(2) X
{1,2,3} /

({1,243},
{1, 33{2})

({1H{2}{3}, {1.2.3})



Description of intersections in terms of trees

({1.2.3}, {1H{2}{3})

{1,2}{3}  {1}{2,3}

(1.3}{2) X \
{1,2,3}

Some pairs don't appear /

({1,243},
{1H{2.3})

({1,243},
{1, 33{2})

({1H{2}{3}, {1.2.3})



Description of intersections in terms of trees

{1L.2}3}  {1}{2,3) ({123}, {1}{2}{3})

1,3}{2} v
{1, A\ \

{1,2,3}

({1,2}{3},
{1H{2.3})

Some pairs don't appear

12 1

3 23 ({1H2}{3}, {1.23})

({1,2{3},
{1, 34{2})



Description of intersections in terms of trees

{1L.2}3}  {1}{2,3) ({123}, {1}{2}{3})

1,3}{2} v
{1, A\ \

{1,2,3}

({1,2}{3},
{1H{2.3})

Some pairs don't appear

({1,2{3},
{1, 34{2})

3—%—23 ({1H2}{3}, {1.23})



Description of intersections in terms of trees

{1L.2}3}  {1}{2,3) ({123}, {1}{2}{3})

1,312} v
{1, A\ \

{1,2,3}

({1,2}{3},
{1H{2.3})

Some pairs don't appear

1214 ({1.2}{3},
2 {1, 3}{2})
3523 ({1233}, {1.2.3})



De l'intersection d'hyperplans aux foréts colorées

Intersection d'hyperplans

Chaque intersection est une foréts d'arbres enracinés aux arétes colorées
telles que :

@ il y a £ couleurs d'arétes différentes et 1 est une racine,

o L’aréte partant d'un enfant n'a pas la méme couleur que I'aréte le
reliant a son parent.

A A A A HF

_\\/\%/



De l'intersection d'hyperplans aux foréts colorées
Intersection d'hyperplans

Chaque intersection est une foréts d'arbres enracinés aux arétes colorées
telles que :

@ il y a £ couleurs d'arétes différentes et 1 est une racine,

o L'aréte partant d'un enfant n'a pas la méme couleur que I'aréte le
reliant a son parent.

RS ISR

bedode Bodsts
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First example : Right-decorated partitions posets 17 aka
Vallette's generalised partition posets

o a(m &) =m

° go(ﬂ’g)((a,n)) = (a/m,v) (recalling na = vao (fp)PeﬂlA for any part A
of a): it is NOT an isomorphism.

® Yire)((B,v)) = [I1ex Byt it is an isomorphism of posets.

Proposition (D.O. - Dupont, 24+)

NP is an operadic poset species.




Second example : Left-decorated partitions posets "I

Definition

Let P be a set operad satisfying P(J) = & and P({*}) = {«}.

A Left-P-decorated partition of a finite set V is a pair (, &), where 7 is a
partition of V and & € P (7).

The set of Left-7P-decorated partitions of V is endowed with the partial

order
(Oé,l/) < (6777) <> o <I'I(V) 5777 =Vo (é—A)Aea 0

Assocr]({1,2,3}), aka Face poset of the permutohedron
11213 13|12  3J|1]2  3J2]1 231 __21]3

RNANES NN

123123 13]2  3)12 321 213

S\




Second example : Left-decorated partitions posets "I

e a(m &) =m
® ¢Y(re)((a,n)) = (a/m,ij), where j is de decoration of P(«a/7) induced
by 7: it is an isomorphism.

° w(mg)((ﬁ,n)) = HTGW(/BH_’:“T)' where n = £ o (uT) Ter: itis NOT
an isomorphism of posets.

Proposition (D.O. - Dupont, 24+)

When P is left-basic, T is an operadic poset species.




First example : parking function

Definition
Given a finite set S, a S-parking function is

@ a non-crossing partition m = (71,...,7x) (where we order the parts
according to their minimal elements) of {1,...,|S|},

@ whose parts are labeled by a subset of S of same size,

@ so that the labels form a partition of S,

(3H2H1}  {3H1H2} {2}{3}{1} {1H2H3} {1}{3}{2} {2}{1}(3}
Lol I

{2.3}
m (3312} {2}{1.3} {1}{2.3} {2.3}{1} ({L3}{2} ({L.2}{3}
I M [ o [

/“//

{1.2,3}
M



Proposition (DO—-Josuat-Verges—Randazzo, 22; Kreweras, 72)

For any finite set S, the poset My (S) U 1 with an added maximum and the
maximal intervals of Ma(S) are shellable, hence Cohen—Macaulay.

dim A" Y (Mo({1,...,n})) = nlC, = (2n—2)(2n —1)...n,

where C, is the nth Catalan number. As an &,-module, it is made of C,
copies of the regular representation.

Proposition

The poset species I, is an operadic poset species.

Proposition
We have the equality in h*(M5(3)):

(1<2)<3+1<(2<3)+(1<3)<2+1<(3<2)=0.

In particular, the map a* : N"1Lie — h*(y) factors through A~'PreLie.




Hypergraphs

Definition (Berge)
A hypergraph (on a set V) is an ordered pair (V/, E) where:
e V is a finite set (vertices)

@ E is a collection of subsets of cardinality at least two of elements of
V (edges).

Example of a hypergraph on [1;7]

[3X %

At




Hypertrees

Definition

A hypertree is a non-empty hypergraph H such that, given any distinct
vertices v and w in H,

o there exists a walk from v to w in H with distinct edges e;, (H is
connected),

@ and this walk is unique, (H has no cycles).

Example of a hypertree




The hypertree poset

Definition
Let / be a finite set of cardinality n, S and T be two hypertrees on /.

S < T <= Each edge of S is the union of edges of T
We write S< Tif ST butS#T.




Euler characteristic of the hypertree posets

Proposition (McCammond-Meier, 2004)

The dimension of the top cohomology group of m',, is given by:

dim (H"2(HT,)) = (=1)"*(n — 1)"

Proposition
The dimension of the top cohomology group of HT,, is given by:

,(2n —3)!

dim (H"2(HT,)) = (-1) S




(2n—-3)!
(n—=1)! =~

A006963

Number of planar embedded labeled trees with n nodes: (2n-3)!/(n-1)! for n
==2,a(l)=1.
(Formerly M3076)

1, 1, 3, 28, 210, 3024, 55440, 1235520, 32432400, 980179200, 33522128640, 1279935820800,
53970627110400, 2490952020480000, 124903451312640000, 6761440164390912000, 393008709555221760000,

24412776311194951680000, 1613955767240110694400000 (list; graph; refs; listen; history; text; internal

format)
OFFSET
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Post-Lie operad [Vallette, 07 ; Munthe-Kaas—Wright, 08]

The underlying module PostLie(V) of post-Lie operad is spanned by Lie
brackets of planar trees with nodes labeled by V. The substitution of a
tree t inside a node v is given by the sum over all the way to graft each
child of v to the right of a node of t (planar pre-Lie product).

® ®

@ ® & @ ® ®

34 +
Pos:Lie @ @ @ @

[Val]

Proposition

The module of n-ary operations of Post-Lie
operad has rank # Post-Lie(n) = %




The hypertree poset species is an operadic poset species

Let H be a hypertree on S and E’ be the set of edges of H without their
closest vertex to 0.

e a(H)=F
@ oH(G) =hypertree induced by G on S/V(H)
° 7v/}H(J) = HeeE’ J|e

Proposition (D.O. - Dupont, 24+)

HT is an operadic poset species.




Operadic structure on the cohomology of the nested set
complex (aka. post-Lie !)

Let us consider the map

Post-Lie > h*(HT.)

kN
1 2

1<2+— \/

1 2

(1,2} »

Theorem (DO-Dupont, 22+)

The map ¢ is an operad morphism. The operadic structure on the

cohomology of the hypertree posets is then the desuspension of post-Lie
operad.




Left operadic module structure

By considering chains from the minimal element to anywhere, we prove
that preLie operad as a left post-lie module structure.

1« T=1~T,
(G—~D)<T=(GaT)~D+G~—(D<T)
{§, T} =T —~5-S5S~—~T,

where « is the usual pre-Lie product.



Nested sets

Problem

There are no operadic structure on the leveled cobar construction, but
there is one on the cobar construction !

Solution :

Forget about the levels !
1 4 2 35 7 6

1 42 35 7 6

This is what we obtain when we consider nested sets instead of chains !



Building sets and nested sets [De Concini—Procesi, 95 ;
Feichtner—Miiller, 05]

Consider L a finite join-semilattice (any nonempty subset has a least upper
bound). For any S < £ and x € L, we write

Sex = {yeSly = x}.

Definition
A building set is a subset G in £_; such that for any x € £_; and
maxGsx = {g1, ..., 8k} there is an isomorphism of posets

A nested set is a subset S of G such that for any set of incomparable

elements x1,...,x; in S (t = 2), the set {x1,...,x:} has a greatest lower
bound (meet) which does not belong to G.




Topological result

The G-nested sets form an abstract simplicial complex, called the nested
set complex.

Proposition (Feichtner—Miiller, 05)

Consider a join-semilattice £ and an associated building set G. The
associated nested set complex is homotopy equivalent to the order
complex of the poset.

For partition posets

The cobar resolution (for the Commutative operad) corresponds to the
cochain complex of the nested set complex associated with the minimal
building set.




The nested set complex of hypertrees

@ Maximal intervals in the hypertree posets are join-semilattices
@ The nested sets of hypertrees are the following combinatorial objects:

o‘m

17473 2 5 776

)

Definition
A merge tree is a pair (T, 7) of trees such that

e T is a (non planar) rooted reduced (no vertex
of valency 2) tree with leaves labeled by

{1,...,n} g
e 7 is a (non planar oriented) tree whose vertices A m
are labeled by {0,...,n} and whose root is0  |1743 2 5 7 "6

o for any internal vertex s in T, the restriction of
T to edges leaving the leaves above s is
connected )

-



Operadic composition

The operadic composition of a bitree b in a node v is as follows:

@ the blue children of v are grafted to some nodes in b (pre-Lie
composition)

@ the bottom tree of b is grafted at the place of the leaf v (usual
magmatic composition)



Operadic structure on the cohomology of the nested set
complex (aka. post-Lie !)

Let us consider the map

Post-Lie > H*(HT.)

kN
1 2

1<2+— \/

1 2

(1,2} »

Theorem (DO-Dupont, 22+)

The map ¢ is an operad morphism. The cohomology of the hypertree
poset can be endowed with an operadic structure. It is then isomorphic to
the suspension of post-Lie operad.
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