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Motivation

algebraic problem : study the diagonal of the permutohedron

geometric problem : counting regions in an hyperplane arrangement

combinatorics problem : counting "good" tuples of partitions

graph problem : counting trees with colored edges
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(Yes, combinatorics is mainly counting)




Outline

e The weak order and the permutohedron
9 How can we count regions of an hyperplane arrangement ?

e The section for which you can wake up if you love graphs but hate algebra
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The weak order and the permutohedron



Poset=partially ordered set
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First example of poset
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First main example : Weak order W,

@ To raise in the order, ...ab... — ... ba..

123

., witha<b
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First main example : Weak order W,

@ To raise in the order, ...
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@ oo
The permutohedron = polytope with vertices labelled by

permutation and edges given by the weak order
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Short quizz :

How many vertices does the permutohedron have ? n!l«— Exclamation point




@ oo
The permutohedron = polytope with vertices labelled by

permutation and edges given by the weak order

4321

Short quizz :

How many vertices does the permutohedron have ? n!l«— Exclamation point
How many faces of dimension n — k does the permutohedron have?
k!Sz(n, k) = nb of ordered partitions in k parts of {1,...,n}




Labelling of the faces of the permutohedron
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Labelling of the faces of the permutohedron
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Labelling of the faces of the permutohedron
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Hyperplane arrangement (Thank you Sylvie!)

Hyperplane arrangement = set of intersecting affine subspaces of
codimension 1

©V. Pilaud



Polytope and hyperplane arrangement

©V. Pilaud

WYMR

Number of faces of dimension k = number of regions of dimension n — k
(linked with M&bius numbers of the intersection poset)




How can we count regions of an hyperplane
arrangement ?



Intersection poset

Definition
Intersection poset = Poset of intersections of hyperplanes ordered by
(reverse) inclusion

7L

// B /\
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Intersection poset : Another more complicated example

Definition

Intersection poset = Poset of intersections of hyperplanes ordered by

(reverse) inclusion J

S X A XA K
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Mo6bius numbers

Definition
M&bius function : p(x,x) =1 and p(x,y) = — Xcrey B(X, 2) J




Mo6bius numbers

Definition
M&bius function : p(x,x) =1 and p(x,y) = — Xcpey B(X, 2) J

Just like a game on an oriented graph'!
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Mo6bius numbers

Definition
M&bius function : p(x,x) =1 and p(x,y) = — Xcrey B(X, 2)

{1,2,3}

\

\
{112,310, — 1 {1,312} {1,213}
— | —

On, := {1H{2H{3} 1(0n,. ) 1



Mo6bius numbers

Definition
M&bius function : p(x,x) =1 and p(x,y) = — Xcrey B(X, 2)

{1,2,3}
\
{142,340, ) = =1 {132} p(0n, ) = — 1 {123} p(0p, ) = 1
\
On, == {1243} 1(0n, ) 1



Mo6bius numbers

Definition
M&bius function : p(x,x) =1 and p(x,y) = — Xcrey B(X, 2)

{1,2,3} _ 1(0m,,-) = 2 < M0bius number
|
(12,3} 100,00 = 1 AL3H2} p(0n, ) = 1 {1,213} p(0p,. ) — 1
|
On, = {1H{2}{3} 1(0n ) =1



Let A be an hyperplane arrangement and 7 be its intersection poset.

number of k-faces = Z l(1, J)]

1<JeZ
dim(/)=k

PN
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In this talk : ¢ copies of the braid arrangement

Definition
The braid arrangement is the hyperplane arrangement whose hyperplane

satisfy equations
Hij = {x € R"|xi = x}

X



of aset V:
k
Vi, il Ve V= |V,VinV=fori+]
i=1
Partial order on set partitions of a set V :

<{V1,...,Vk}<:> ,HjG{l,k}S.t. g\/j



of aset V:
k
Vi, il Ve V= |V,VinV=fori+]
i=1
Partial order on set partitions of a set V :

<{V1,...,Vk}<:> ,HJG{].,/(}SI. g\/j

{1,2,3,4}
//[Iﬁ\\

(112,314} {12,431 ({1, 2}43,4}) ({1,312, 4}] ({1, 3.4}{2}) ({1,412, 3} [(1}{2. 3,4}

(2] _ (L) (3] (LaH2s)) (i) (132464

{1{23 {314}
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Intervals and mobius numbers of the partition posets

{1,2,3,4}

(112,314} {12,431 ({1, 2}43,4}) ({1.3H2.4}] ({1, 3.4}{2}) ({1,412, 3} [(1}{2. 3,4}

(2] _ (L) (D3] (La2s)) (6] (132464

{B{23314)

Form = (m1,...,7k) € M,, we have :

Lemma

[On,, 7] n”\m [7,1n,] ~ Nk p(m, 1n,) = (k= 1)!




Formula for the number of regions of the braid
arrangement

Proposition
f(Bs") = >, || #FlG]—1)!
F<G GcG

where F < G are two partitions, F has k + 1 parts and
F[Gi] = {Fj € FIF; < Gi}




Formula for the number of regions of the braid
arrangement

Proposition
f(Bs") = >, || #FlG]—1)!
F<G GcG

where F < G are two partitions, F has k + 1 parts and
F[Gi] = {Fj € FIF; < Gi}

Focus of the next section
What are the underlying combinatorial object when £ > 27




The section for which you can wake up if you love
graphs but hate algebra



Description of faces in terms of trees
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Description of faces in terms of trees

({1.2,3}, {1}{2}{3})

{1,2}{3}  {1}{2,3} \ /

{1,3}{2} A\
{1,2,3} //\\




Description of faces in terms of trees
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Description of faces in terms of trees

({1.2,3}, {1}{2}{3})

L.2H3}  {1}{2.3) \ /

(1,312} \/ ({1.2}{3},
A\ {1}{2,3})
{1,2,3} /

({1H2H3}, {1.23})




Description of faces in terms of trees

({1.2,3}, {1}{2}{3})

({1,213},
{1{2.3})

123 123 \
(1.3}{2) X
(1,2,3) /

({1,213},
{1, 3}{2})

({1H2H3}, {1.23})



Description of faces in terms of trees

({1.2,3}, {1}{2}{3})

{1.2}{3}  {1}{2,3}

(1.3}{2) X \
{1,2,3}

Not every pair is possible J/

9 ) il

({1,213},
{1{2.3})

({1,213},
{1, 3}{2})

({1H2H3}, {1.23})



Description of faces in terms of trees
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Description of faces in terms of trees
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Description of faces in terms of trees

{1,2}{3}  {1}{2,3} ({1.2,3}, {1}{2}{3})

(1.3}{2) X

{1,2,3}

({1,213},
{1{2.3})

Not every pair is possible J

i 9 b

1214 ({1.2}{3},
2 {1, 3}{2})
3523 ({1}{2}{3}, {1.2,3})
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From intersections of hyperplanes to coloured forests

Intersection of hyperplanes
Each intersection is a forest of edge-coloured rooted trees s.t. :
@ there are /¢ different colours of edges and 1 is a root

@ a child edge does not have the same colour as its parent.

A A A A HF
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From intersections of hyperplanes to coloured forests

Intersection of hyperplanes
Each intersection is a forest of edge-coloured rooted trees s.t. :
@ there are /¢ different colours of edges and 1 is a root

@ a child edge does not have the same colour as its parent.
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Formula for the number of regions of 2 copies of the braid
arrangement

Theorem (BDO, M. Josuat-Verges, G. Laplante-Anfossi, V. Pilaud, K.
Stoeckl)

fota—1nko-1(Ba>) = D, [ ] [ #Filpl

F<G ie[2] peG;

where F and G are two forests of 2-edge-coloured trees and #F; = k; + 1

fo_1(Bn2) = (n+ 1)1[x"]exp ( 3 m(an—mH) (Qmm)) [A213507]

m>=1

fo(Bn?) = 2(n + 1)""2[A007334]

which admits the following refinement :

1 n
fk,n—k—l(an) = m (k) (k aF 1)”_k_1(n — k)k
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Formula for the number of regions of ¢ copies of the braid
arrangement

Theorem (BDO, M. Josuat-Verges, G. Laplante-Anfossi, V. Pilaud, K.
Stoeckl)

foto—t,...—k—1(Ba") = D T ] #Filp]

F<G je[{] peG;

where F and G are two forests of {-edge-coloured trees and #F; = k; + 1
fo_1(BpY) =72

fo(BaY) =1+ (£—1)n)"2

which admits the following refinement :

fenk_1(Bat) =77
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Theorem (BDO, M. Josuat-Verges, G. Laplante-Anfossi, V. Pilaud, K.
Stoeckl)
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F<G je[{] peG;
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Merci de votre attention!
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