De la diagonale du permutoèdre aux arbres k-colorés : une histoire de partitions et d'arbres

Bérénice Delcroix-Oger

joint work with

Matthieu Josuat-Vergès (IRIF), Guillaume Laplante-Anfossi (Univ. Melbourne), Vincent Pilaud (LIX), Kurt Stoeckl (Univ. Melbourne)

Motivation

Motivation

algebraic problem : study the diagonal of the permutohedron

Motivation

algebraic problem : study the diagonal of the permutohedron

(Yes, combinatorics is mainly counting)

Outline

- 1 The weak order and the permutohedron
- 2 How can we count regions of an hyperplane arrangement?
- 3 The section for which you can wake up if you love graphs but hate algebra

Trailer

The weak order and the permutohedron

Poset=partially ordered set

• To raise in the order, $\dots ab \dots \rightarrow \dots ba \dots$, with a < b

• To raise in the order, $\dots ab \dots \rightarrow \dots ba \dots$, with a < b

• To raise in the order, $\ldots ab \ldots \rightarrow \ldots ba \ldots$, with a < b

The permutohedron = polytope with vertices labelled by permutation and edges given by the weak order

The permutohedron = polytope with vertices labelled by permutation and edges given by the weak order

Short quizz:

How many vertices does the permutohedron have? n!! \leftarrow Exclamation point

The permutohedron = polytope with vertices labelled by permutation and edges given by the weak order

Short quizz:

How many vertices does the permutohedron have? $n! \leftarrow \text{Exclamation point}$ How many faces of dimension n-k does the permutohedron have? $k!S_2(n,k) = \text{nb}$ of ordered partitions in k parts of $\{1,\ldots,n\}$

Labelling of the faces of the permutohedron

Labelling of the faces of the permutohedron

Labelling of the faces of the permutohedron

Hyperplane arrangement (Thank you Sylvie!)

Hyperplane arrangement = set of intersecting affine subspaces of codimension 1

Polytope and hyperplane arrangement

©V. Pilaud

WYMR

Number of faces of dimension k = number of regions of dimension n - k (linked with Möbius numbers of the intersection poset)

How can we count regions of an hyperplane arrangement?

Intersection poset

Definition

Intersection poset = Poset of intersections of hyperplanes ordered by (reverse) inclusion

Intersection poset = Poset of intersections of hyperplanes ordered by (reverse) inclusion

Möbius function : $\mu(x,x)=1$ and $\mu(x,y)=-\sum_{x\leqslant z< y}\mu(x,z)$

Möbius function :
$$\mu(x,x)=1$$
 and $\mu(x,y)=-\sum_{x\leqslant z< y}\mu(x,z)$

Just like a game on an oriented graph!

Möbius function : $\mu(x,x) = 1$ and $\mu(x,y) = -\sum_{x \leqslant z < y} \mu(x,z)$

Möbius function :
$$\mu(x,x)=1$$
 and $\mu(x,y)=-\sum_{x\leqslant z < y} \mu(x,z)$

Möbius function : $\mu(x,x) = 1$ and $\mu(x,y) = -\sum_{x \leqslant z < y} \mu(x,z)$

$$\{1\}\{2,3\} \underbrace{\mu(0_{\Pi_n},_)}_{|} = -1 \quad \{1,3\}\{2\}$$

$$0_{\Pi_n} := \{1\}\{2\}\{3\} \quad \underline{\mu(0_{\Pi_n},_)} = 1$$

Möbius function :
$$\mu(x,x) = 1$$
 and $\mu(x,y) = -\sum_{x \leqslant z < y} \mu(x,z)$

$$\{1\}\{2,3\} \underbrace{\mu(0_{\Pi_n},_) = -1}_{ \{1,3\}\{2\}} \underbrace{\mu(0_{\Pi_n},_) = -1}_{ \{1,2\}\{3\}} \underbrace{\mu(0_{\Pi_n},_) = -1}_{$$

Möbius function :
$$\mu(x,x) = 1$$
 and $\mu(x,y) = -\sum_{x \leqslant z < y} \mu(x,z)$

$$\{1,2,3\} \underbrace{\mu(0_{\Pi_n},_) = 2}_{\text{$\mu(0_{\Pi_n},_) = -1$}} \underbrace{\mu(0_{\Pi_n},_) = 2}_{\text{$\mu(0_{\Pi_n},_) = -1$}} \underbrace{\mu(0_{\Pi_n},_) = -1}_{\text{$\mu(0_{\Pi_n},_) = 1$}} \underbrace{\mu(0_{\Pi_n},_) = -1}_{\text{$\mu(0_{\Pi_n},_) = 1$}} \underbrace{\mu(0_{\Pi_n},_) = 1}_{\text{$\mu(0_{\Pi_n},_) = 1$}} \underbrace{\mu(0_{\Pi$$

Zaslavsky's theorem

Let $\mathcal A$ be an hyperplane arrangement and $\mathcal I$ be its intersection poset.

Theorem (Zaslavsky, 75)

$$number \ of \ k\text{-}faces \ = \sum_{\substack{I \leqslant J \in \mathcal{I} \\ \dim(I) = k}} |\mu(I,J)|$$

In this talk : ℓ copies of the braid arrangement

Definition

The braid arrangement is the hyperplane arrangement whose hyperplane satisfy equations

$$H_{i,j} = \{x \in \mathbb{R}^n | x_i = x_j\}$$

Intersection poset of the braid arrangement: the partition poset Π_n

Partitions of a set V:

$$\{V_1,\ldots,V_k\} \models V \Leftrightarrow V = \bigsqcup_{i=1}^k V_i, V_i \cap V_j = \emptyset \text{ for } i \neq j$$

Partial order on set partitions of a set V:

$$\{V_1',\ldots,V_p'\}\leqslant\{V_1,\ldots,V_k\}\Leftrightarrow\forall i\in\{1,p\},\exists j\in\{1,k\}\text{ s.t. }V_i'\subseteq V_j$$

Intersection poset of the braid arrangement : the partition poset Π_n

Partitions of a set V:

$$\{V_1,\ldots,V_k\} \models V \Leftrightarrow V = \bigsqcup_{i=1}^{\kappa} V_i, V_i \cap V_j = \emptyset \text{ for } i \neq j$$

Partial order on set partitions of a set V:

$$\{V_1',\ldots,V_p'\}\leqslant\{V_1,\ldots,V_k\}\Leftrightarrow\forall i\in\{1,p\},\exists j\in\{1,k\}\text{ s.t. }V_i'\subseteq V_j$$

Intervals and möbius numbers of the partition posets

Lemma

For
$$\pi = (\pi_1, \dots, \pi_k) \in \Pi_n$$
, we have :

$$[0_{\Pi_n}, \pi] \simeq \prod_{i=1}^k \Pi_{|\pi_k|}$$
 $[\pi, 1_{\Pi_n}] \simeq \Pi_k$ $\mu(\pi, 1_{\Pi_n}) = (k-1)!$

Proposition

$$f_k(\mathcal{B}_n^{\ell}) = \sum_{\mathbf{F} \leq \mathbf{G}} \prod_{G_i \in \mathbf{G}} (\#\mathbf{F}[G_i] - 1)!$$

where $\mathbf{F} \leq \mathbf{G}$ are two partitions, \mathbf{F} has k+1 parts and

$$\mathbf{F}[G_i] = \{F_j \in \mathbf{F} | F_j \subseteq G_i\}$$

Formula for the number of regions of the braid arrangement

Proposition

$$f_k(\mathcal{B}_n^{\ell}) = \sum_{\mathbf{F} \leq \mathbf{G}} \prod_{G:\in \mathbf{G}} (\#\mathbf{F}[G_i] - 1)!$$

where $\mathbf{F} \leq \mathbf{G}$ are two partitions, \mathbf{F} has k+1 parts and $\mathbf{F}[G_i] = \{F_i \in \mathbf{F} | F_i \subseteq G_i\}$

Focus of the next section

What are the underlying combinatorial object when $\ell \geqslant 2$?

The section for which you can wake up if you love graphs but hate algebra

\bigcirc \bigcirc \bigcirc

\bigcirc \bigcirc \bigcirc \bigcirc

$\circ \circ 3$

Description of faces in terms of trees

Not every pair is possible $(\{1,2\}\{3\},\{1,2\}\{3\})$

0 3

From intersections of hyperplanes to coloured forests

Intersection of hyperplanes

Each intersection is a forest of edge-coloured rooted trees s.t. :

- ullet there are ℓ different colours of edges and 1 is a root
- a child edge does not have the same colour as its parent.

\bigcirc \bigcirc \bigcirc \bigcirc

From intersections of hyperplanes to coloured forests

Intersection of hyperplanes

Each intersection is a forest of edge-coloured rooted trees s.t. :

- ullet there are ℓ different colours of edges and 1 is a root
- a child edge does not have the same colour as its parent.

Formula for the number of regions of 2 copies of the braid arrangement

Theorem (BDO, M. Josuat-Vergès, G. Laplante-Anfossi, V. Pilaud, K. Stoeckl)

$$f_{n-k_1-1,n-k_2-1}(\mathcal{B}_n^2) = \sum_{\mathbf{F}\leqslant\mathbf{G}} \prod_{i\in[2]} \prod_{p\in G_i} (\#F_i[p]-1)!$$

where **F** and **G** are two forests of 2-edge-coloured trees and $\#F_i = k_i + 1$

$$f_{n-1}(\mathcal{B}_n^{\ 2}) = (n+1)! [x^n] \exp\left(\sum_{m>1} \frac{x^m}{m(m+1)} \binom{2m}{m}\right) [A213507]$$

$$f_0(\mathcal{B}_n^2) = 2(n+1)^{n-2}[A007334]$$

which admits the following refinement:

$$f_{k,n-k-1}(\mathcal{B}_n^2) = \frac{1}{k+1} \binom{n}{k} (k+1)^{n-k-1} (n-k)^k$$

Formula for the number of regions of ℓ copies of the braid arrangement

Theorem (BDO, M. Josuat-Vergès, G. Laplante-Anfossi, V. Pilaud, K. Stoeckl)

$$f_{n-k_1-1,...,n-k_\ell-1}(\mathcal{B}_n^{\ \ell}) = \sum_{\mathbf{F} \leqslant \mathbf{G}} \prod_{i \in [\ell]} \prod_{p \in G_i} (\#F_i[p] - 1)!$$

where **F** and **G** are two forests of ℓ -edge-coloured trees and $\#F_i = k_i + 1$

$$f_{n-1}(\mathcal{B}_n^{\ell}) = ??$$

$$f_0(\mathcal{B}_n^{\ell}) = \ell (1 + (\ell - 1)n)^{n-2}$$

which admits the following refinement :

$$f_{k,n-k-1}(\mathcal{B}_n^{\ \ell}) = ??$$

Formula for the number of regions of ℓ copies of the braid arrangement

Theorem (BDO, M. Josuat-Vergès, G. Laplante-Anfossi, V. Pilaud, K. Stoeckl)

$$f_{n-k_1-1,...,n-k_\ell-1}(\mathcal{B}_n^{\ell}) = \sum_{\mathbf{F} \leqslant \mathbf{G}} \prod_{i \in [\ell]} \prod_{p \in G_i} (\#F_i[p] - 1)!$$

where **F** and **G** are two forests of ℓ -edge-coloured trees and $\#F_i = k_i + 1$

$$f_{n-1}(\mathcal{B}_n^{\ell}) = ??$$

$$f_0(\mathcal{B}_n^{\ell}) = \ell (1 + (\ell - 1)n)^{n-2}$$

which admits the following refinement :

$$f_{k,n-k-1}(\mathcal{B}_n^{\ \ell}) = ??$$