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Posets(=partially ordered set) of (set) partitions ΠpV q

Partitions of a set V :

tV1, . . . ,Vku |ù V ô V “

k
ğ

i“1

Vi ,Vi X Vj “ H for i ‰ j

Partial order on set partitions of a set V :

tV1, . . . ,Vku ď tV 1
1, . . . ,V 1

pu ô @i P t1, pu, Dj P t1, ku s.t. V 1
i Ď Vj

t1ut2ut3ut4u

t1, 2ut3ut4u t1, 3ut2ut4u t1ut2, 3ut4u t1, 4ut2ut3u t1ut2, 4ut3u t1ut2ut3, 4u

t1, 2, 3ut4u t1, 2, 4ut3u t1, 2ut3, 4u t1, 3ut2, 4u t1, 3, 4ut2u t1, 4ut2, 3u t1ut2, 3, 4u

t1, 2, 3, 4u
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What kind of combinatorics on posets ?

Elements

For Πn

Number of elements with k parts : Spn, kq (Stirling number of the 2nd kind)
In terms of generating series : 1

t exp ptpex ´ 1qq ´ 1 “
ř

ně1

ř

πPΠn
t |π|´1 xn

n! “: E` ˝ tE`.

Intervals

For Πn

Number of intervals rπ, τ s with π with k parts and τ with ℓ parts (ℓ ě k) :
Spn, ℓ ` 1qSpℓ ` 1, k ` 1q

In terms of generating series :
ř

ně1

ř

πďτPΠn
t |π|´1q|τ |´|π| xn

n! “ E` ˝ tE` ˝ qE`

Möbius numbers
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Möbius numbers



1

What kind of combinatorics on posets ?

Elements

For Πn

Number of elements with k parts : Spn, kq (Stirling number of the 2nd kind)
In terms of generating series : 1

t exp ptpex ´ 1qq ´ 1 “
ř

ně1

ř

πPΠn
t |π|´1 xn

n! “: E` ˝ tE`.

Intervals

For Πn

Number of intervals rπ, τ s with π with k parts and τ with ℓ parts (ℓ ě k) :
Spn, ℓ ` 1qSpℓ ` 1, k ` 1q

In terms of generating series :
ř

ně1

ř

πďτPΠn
t |π|´1q|τ |´|π| xn

n! “ E` ˝ tE` ˝ qE`
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Möbius function and Möbius number

Definition

Möbius function of a poset P: µ : P ˆ P Ñ N defined inductively by

µpx , xq “ 1

µpx , yq “ ´
ÿ

xďzăy

µpx , zq for x ă y .

Möbius number of a bounded poset P: µpPq :“ µp0̂, 1̂q.

t1ut2ut3ut4u

6=(4-1)!

t1, 2ut3ut4u

2

t1, 3ut2ut4u t1ut2, 3ut4u t1, 4ut2ut3u t1ut2, 4ut3u t1ut2ut3, 4u

t1, 2, 3ut4u

-1

t1, 2, 4ut3u t1, 2ut3, 4u t1, 3ut2, 4u t1, 3, 4ut2u t1, 4ut2, 3u t1ut2, 3, 4u

t1, 2, 3, 4u

1
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Möbius function and Möbius number
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Whitney numbers of the first kind of Πn

ÿ

ně1

ÿ

πPΠn

µp0̂, πqt |π|´1 x
n

n!
“

ÿ

ně1

n´1
ÿ

k“0

Spn, k ` 1q ˆ k!p´tqk
xn

n!

“ x ` p1 ´ tq
ÿ

ně2

fPermp´tq
xn

n!
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Whitney numbers of the first kind of Πn

ÿ

ně1

ÿ

πPΠn

µp0̂, πqt |π|´1 x
n

n!
“

ÿ

ně1

n´1
ÿ

k“0

Spn, k ` 1q ˆ k!p´tqk
xn

n!

“ x ` p1 ´ tq
ÿ

ně2

fPermp´tq
xn

n!

cf. ”Cellular diagonals of permutahedra”with G. Laplante-Anfossi, V. Pilaud and K. Stoeckl
(ArXiv : 2308.12119) (credit leftmost figure : V. Pilaud)
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Whitney numbers of the first kind of Πn

ÿ

ně1

ÿ

πPΠn

µp0̂, πqt |π|´1 x
n

n!
“

ÿ

ně1

n´1
ÿ

k“0

Spn, k ` 1q ˆ k!p´tqk
xn

n!

“ x ` p1 ´ tq
ÿ

ně2

fPermp´tq
xn

n!

In fact,

All given by counting chains !
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Chains, Möbius numbers and Zeta polynomial

Let P be a poset with a unique minimum 0̂.

Definition (Stanley, 74)

The zeta polynomial of a poset P is the polynomial:

Z pP, kq “
ÿ

ℓě0

|ta1 ă . . . ă ak |a1, . . . , ak P Pu|.

Proposition (Edelman, 80)

When P is bounded, Z pP, ´2q “ µpPq

When P has only a minimum or a maximum, Z pP, ´1q “ µpP̂q
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We write Zk for the e.g.f. of Z pΠn, kq. Then,

Zk “ E` ˝ Zk´1
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Results on partition posets

We write Zk for the e.g.f. of Z pΠn, kq. Then,

Zk “ E` ˝ Zk´1

Z1 “ E` ˝ E`

Z0 “ E`

Z´1 “ X

Z´2 “ ΣLie “
à

ně1

Liepnq bSn sgnn

Proposition (Haiman, Stanley, Joyal 80s ; Fresse 04)

hn´1pΠnq “ Liepnq bSn sgnn,

where Liepnq is the representation of the symmetric group corresponding to the Lie operad and
sgnn is the signature representation.
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Noncrossing partitions [Kreweras, 1972]

ti1, . . . , inu with i1 ă . . . ă in Ñ
i1 i2 . . . in

Definition (Kreweras, 1972)

A partition π “ tπ1, . . . , πku of t1, . . . , nu is noncrossing iff
$

’

&

’

%

a ă b ă c ă d

a, c P πi

b, d P πj

ùñ i “ j

NCn “ set of noncrossing partitions of t1, . . . , nu

a b c d

Ñ counted by Catalan numbers 1
n`1

`

2n
n

˘
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Partition posets

t1ut2ut3ut4u

t1, 2ut3ut4u t1, 3ut2ut4u t1ut2, 3ut4u t1, 4ut2ut3u t1ut2, 4ut3u t1ut2ut3, 4u

t1, 2, 3ut4u t1, 2, 4ut3u t1, 2ut3, 4u t1, 3ut2, 4u t1, 3, 4ut2u t1, 4ut2, 3u t1ut2, 3, 4u

t1, 2, 3, 4u
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Partition posets
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Noncrossing partition posets

Problem

No action of the symmetric group on this poset !
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Noncrossing partition posets

Problem

No action of the symmetric group on this poset !
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Noncrossing 2-partitions

Definition (Edelman, 1980)

A n.c. 2-partition of size n is a pair pπ, σq P NCPn ˆ Sn s.t.

#

tb1, . . . , bku P π

b1 ă b2 ă . . . ă bk
ùñ σpb1q ă σpb2q ă . . . ă σpbkq.

2 6 5 12 9 10 7 11 3 4 1 8
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Noncrossing 2-partition poset

1 2 3

2 1 31 3 21 2 3 2 3 1 3 1 2 3 2 1

2 1 31 2 31 3 21 2 31 2 3 1 3 2 2 1 3 2 3 1 3 1 2

How many noncrossing 2-partitions are there ?

There are pn ` 1qn´1 noncrossing 2-partitions, which is the same as the number of parking
functions on n parking spots.
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Let’s drive and park !

1 2 3 4 5
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1 2 3 4 5

23



1

Let’s drive and park !

1 2 3 4 5

:-(3



1

Let’s drive and park !

1 2 3 4 5

:-)3



1

Let’s drive and park !

1 2 3 4 5

3



1

Let’s drive and park !

1 2 3 4 5

:-(



1

Let’s drive and park !

1 2 3 4 5

:-(



1

Let’s drive and park !

1 2 3 4 5

:-)



1

Let’s drive and park !

1 2 3 4 5

Definition

If every car can park, the word, obtained by reading from the first car entering the street to
the last one, is called a parking function.

Examples and counter-examples:

Parking functions of length n Other words of length n
1

11,12,21 22
111, 112, 121, 211, 113, 131, 311,122, 222, 333, 223, 232, 322, 233, 323, 332,
212, 221, 123, 132, 213, 231, 312, 321 133, 313, 331



1

Formal definition of parking functions [Konheim-Weiss, 1966]

Definition

A sequence a “ pa1, . . . , anq P pN˚q
n is a parking function of length n iff

|ti |1 ď ai ď ju| ě j .

Denoting by aÒ the non-decreasing rearrangement of a, this is equivalent to 1 ď aj ă j for any
1 ď j ď n. We call non-decreasing parking function a parking function satisfying a “ aÒ.

Theorem (Konheim-Weiss, 1966; Pollak, 1969)

There are pn ` 1qn´1 parking functions of length n.
There are Cn “ 1

n`1

`

2n
n

˘

non-decreasing parking functions of length n.
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Parking functions and noncrossing partitions

1

Label i by minπ for i P π

Gives a parking function as the label of the jth node is smaller or equal to j .

It is the unique parking function in the orbit which maximizes the number of lucky cars.
Call it the lucky parking function (used by Blass and Sagan to compute the Möbius
function of Tamari lattices under the name ”left bracket vector”).
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Parking functions and noncrossing partitions
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It is the unique parking function in the orbit which maximizes the number of lucky cars.
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Posets of noncrossing 2-partitions in terms of parking functions
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Posets of noncrossing 2-partitions in terms of parking functions
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Posets of noncrossing 2-partitions in terms of parking functions

1 2 3 2 1 1 7 1 9 9 11 9

2 6 5 12 9 10 7 11 3 4 1 8

in terms of parking function:

11 1 9 9 3 2 7 9 1 1 1 2



Parking posets (with M. Josuat-Vergès and L. Randazzo)



Outline

1 From partition posets to parking posets

2 Parking posets (with M. Josuat-Vergès and L. Randazzo)
Parking trees
Noncrossing 2-partition poset (with M. Josuat-Vergès and L. Randazzo)

3 Tamari-parking posets (with M. Josuat-Vergès and H. Han)
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Parking trees

Definition

A parking tree on a set L is a rooted plane tree T “ pV ,E , rq such that:

V P ΠL,

v P V has |v | children.

2 9 10 11

3 4 8

1

76 12

5

Why parking ?
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Bijection between noncrossing 2-partition and parking trees

2 9 10 11

3 4 8

1

76 12

5

2 6 5 12 9 10 7 11 3 4 1 8

Coincides with noncrossing parking spaces of Armstrong–Reiner–Rhoades
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Functional equation for parking trees

2 9 10 11

3 4 8

1

76 12

5

Proposition (DO, Josuat-Vergès, Randazzo,
22)

Pf “
ÿ

pě1

Ep ˆ p1 ` Pf qp

Pf “
ÿ

pě1

xpp1 ` Pf qp

p!
“ exp pxp1 ` Pf qq
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Noncrossing 2-partitions poset

Covering relation in Π2 : merge parts and rearrange labels to respect the increasing condition

Example : 1 2 3 4 ď 2 3 1 4

A1 ∪A2

F1 Fp Fp+1 Fl Fl+1 Fn
. . . . . .. . .

A1

F1 Fp

A2

FlFp+1

Fl+1
Fn

. . .
. . .
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123

12

3

13

2

23

1

1

23

2

13

3

12

12

3

13

2

23

1

1

2

3

1

3

2

2

1

3

3

1

2

2

3

1

3

2

1
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Results

Previously known results

Edelman computed the zeta polynomial and Whitney number of the second kind (number of
elements by rank) in 1980 and Rhoades computed the zeta character in 2014 (section 8).

This poset is a lattice.

When restricting to right combs, get the face poset of the permutohedron.

New criterion to prove shellability !

Enumeration of (weak) k-chains, hence computation of Euler characteristic
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Proposition (DO, Josuat-Vergès, Randazzo, 22)

C l
k,t “

ÿ

pě1

C l ,p
k´1,t ˆ

`

tC l
k,t ` 1

˘p

Chains ϕ1 ď ¨ ¨ ¨ ď ϕk in Π2
n are in bijection with k-parking trees.

The number of chains ϕ1 ď ¨ ¨ ¨ ď ϕk in Π2
n where rkpϕkq “ ℓ is:

ℓ!

ˆ

kn

ℓ

˙

S2pn, ℓ ` 1q.

Hence, the Whitney number of the first kind are given by:

wℓp2NCPnq “ p´1qℓℓ!

ˆ

n ` ℓ ´ 1

n

˙

Spn, ℓ ` 1q



2

More on characters

Proposition (DO, Josuat-Vergès, Randazzo, 22)

The character on the unique non trivial homology group of the augmented poset is:

σ ÞÑ p´1qn´zpσqpn ´ 1qzpσq´1

(up to a sign, prime parking functions !)

Proposition (DO, Dupont, 25+)

The species of noncrossing 2-partitions is an operadic poset species: there is an operadic
structure on

À

mPmaxp2NCPpnqq H̃
n´3pr0̂,msq, with a preLie operations.

Moreover the underlying species is isomorphic to the direct sum of Cn copies of the
regular representation.

The vector space spanned by prime parking functions is a left operadic module for this
operad.
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1 From partition posets to parking posets
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Noncrossing 2-partitions, labelled Dyck path and parking functions

2 5 8 1 3 4 6 7 .

t2, 3, 4, 7u

t5, 8u

t1u

t6u

2 3 4 7

65 8

1

41112712
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Tamari lattices [Tamari, 1951] on parking trees

Definition

C “

h

Ì

h

“ D
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Covering relations on Tamari-Parking posets

p1 . . . pk v1 . . . vℓ

Fk. . .F2RGℓ´1. . .G1

ď
p1 . . . pk

Fk. . .F2v1 . . . vℓ

RGℓ´1. . .G1

p1 . . . pk

. . .RFi

v1 . . . vℓ

Gℓ´1. . .G1

. . .

ď
p1 . . . pk

. . .v1 . . . vℓ

RGℓ´1. . .G1

Fi. . .
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Tamari-parking poset
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Known results and open questions

Proposition (Chapuy–Bousquet-Mélou–Préville-Ratelle, 12)

Say that two intervals in Tamari-parking posets are isomorphic if they have the same minimum
element and maximal elements of the same shape.
The number of class of isomorphisms of intervals is given by:

2npn ` 1qn´2.

The action of the symmetric group on these isomorphisms class of intervals are likely to be, up
to a sign, the same as the one on the space of diagonal coinvariants in three sets of n variables.

The number of intervals in the Tamari-Parking posets and augmented Tamari-Parking posets
are:

n 1 2 3 4 5 6

TPn 1 5 52 855 19 521 574 498

T̂Pn 1 9 69 981 20 818 591 306
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More on the topology of the Tamari-Parking poset

Conjecture (DO)

Augmented Tamari-parking posets are homotopic to a sphere.

Proposition (H. Han, 24)

Tamari-parking posets are lattices. They are neither EL-shellable nor CL-shellable.

Conjecture (DO)

Tamari-Parking posets are operadic poset species. Its unique cohomology group is isomorphic
to the species of lists.

What to bring home

Poset cohomologies are fascinating.

They unveil new operadic structures on nice representations.

Don’t hesitate to bring me your own favourite poset !

Thank you for your attention !
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