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From partition posets to parking posets
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o From partition posets to parking posets
@ The poset of noncrossing partitions
@ Noncrossing partitions and parking functions



Posets(=partially ordered set) of (set) partitions (V)

Partitions of a set V :
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What kind of combinatorics on posets ?

o Elements

For I,

Number of elements with k parts : S(n, k) (Stirling number of the 2nd kind)
In terms of generating series : $exp (t(eX—1))—1=3 Dren, t|“|_1% =:EtotE".
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Mobius function and Mobius number
Definition
Mobius function of a poset P: p: P x P — N defined inductively by
u(x,x) =1
uix,y) = — Z wu(x,z) for x < y.

xX<z<y

Mbbius number of a bounded poset P: u(P) := u(0,1).
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Whitney numbers of the first kind of I1,

kX"

Z_: S(n k+1) x kl(—t)
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cf. "Cellular diagonals of permutahedra” with G. Laplante-Anfossi, V. Pilaud and K. Stoeckl
(ArXiv : 2308.12119) (credit leftmost figure : V. Pilaud)




Whitney numbers of the first kind of I1,
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n=2

In fact,
All given by counting chains !




Chains, Mé&bius numbers and Zeta polynomial

Let P be a poset with a unique minimum 0.
Definition (Stanley, 74)

The zeta polynomial of a poset P is the polynomial:

Z(Pk) =Y H{ar < ... <aar,...,ac € P}|.
=0




Chains, M&bius numbers and Zeta polynomial

Let P be a poset with a unique minimum 0.

Definition (Stanley, 74)

The zeta polynomial of a poset P is the polynomial:

Z(Pk) =Y H{ar < ... <aar,...,ac € P}|.

£=0

Proposition (Edelman, 80)
o When P is bounded, Z(P,—2) = u(P)

o When P has only a minimum or a maximum, Z(P,—1) = u(P)
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Results on partition posets

We write Zj for the e.g.f. of Z(I,, k). Then,
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Results on partition posets

We write Zj for the e.g.f. of Z(M,, k). Then,

Z —EtoZ 4
Zi=EToR*
Zo = E*
Z1=X
Z_p = Ylie = @ Lie(n) ®s, sgnn
n=1

Proposition (Haiman, Stanley, Joyal 80s ; Fresse 04)

AN, = Lie(n) ®s, sgnn,

where Lie(n) is the representation of the symmetric group corresponding to the Lie operad and
sgn, is the signature representation.




Noncrossing partitions [Kreweras, 1972]

(i, iy with iy < ... <ip— T 2 ... 0n
Definition (Kreweras, 1972)
A partition ™ = {71, ..., 7k} of {1,..., n} is noncrossing iff
a<b<c<d
a,Cc E; = =
b, de T
NC, = set of noncrossing partitions of {1,..., n}
VP
a b c d

— counted by Catalan numbers %(2:)




Partition posets
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Noncrossing partition posets



Noncrossing partition posets
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Problem
No action of the symmetric group on this poset !




Noncrossing 2-partitions

Definition (Edelman, 1980)
A n.c. 2-partition of size n is a pair (m,0) € NCP, x &, s.t.

{{bl,...,bk}ew

b1 < by <...< by

- O‘(bl) <(.T(b2) < ... <O‘(bk).

D R —~ DN

2 6 512 9 10 7 11 3 4 1

8



Noncrossing 2-partition poset
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Noncrossing 2-partition poset
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How many noncrossing 2-partitions are there ?
There are (n+ 1)"~! noncrossing 2-partitions, which is the same as the number of parking

functions on n parking spots.




Let’s drive and park !
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Let’s drive and park !
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Let's drive and park !
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Definition

If every car can park, the word, obtained by reading from the first car entering the street to
the last one, is called a parking function.

Examples and counter-examples:

Parking functions of length n Other words of length n
1
11,12,21 22

111, 112, 121, 211, 113, 131, 311,122, | 222, 333, 223, 232, 322, 233, 323, 332,
212, 221, 123, 132, 213, 231, 312, 321 133, 313, 331
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Formal definition of parking functions [Konheim-Weiss, 1966]

Definition
A sequence a = (a1,...,a,) € (N*)" is a parking function of length n iff
Hilt <ai <j}| =]

Denoting by a' the non-decreasing rearrangement of a, this is equivalent to 1 < aj < j for any
1 < j < n. We call non-decreasing parking function a parking function satisfying a = a'.

v

Theorem (Konheim-Weiss, 1966; Pollak, 1969)

There are (n+ 1)"~1 parking functions of length n.

There are C, = ﬁ (2n") non-decreasing parking functions of length n.




Parking functions and noncrossing partitions
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Parking functions and noncrossing partitions
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Parking functions and noncrossing partitions
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Parking functions and noncrossing partitions
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Parking functions and noncrossing partitions

12 3 2 11 71

Label i by minm for i € w



Parking functions and noncrossing partitions
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Parking functions and noncrossing partitions
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Parking functions and noncrossing partitions
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Parking functions and noncrossing partitions

123 211 7 1 9 911 9

Label i by minm for i € w



Parking functions and noncrossing partitions

123 211 7 1 9 911 9
Label i by minm for i € w

o Gives a parking function as the label of the jth node is smaller or equal to ;.



Parking functions and noncrossing partitions

123 211 7 1 9 911 9
Label / by minw forjen

o Gives a parking function as the label of the jth node is smaller or equal to ;.

o It is the unique parking function in the orbit which maximizes the number of lucky cars.
Call it the lucky parking function (used by Blass and Sagan to compute the M&bius
function of Tamari lattices under the name "left bracket vector”).
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Posets of noncrossing 2-partitions in terms of parking functions

m ° (m

123 211 7 1 9 911 9
2 6 512 9 10 7 11 3 4 1 8

in terms of parking function:
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Posets of noncrossing 2-partitions in terms of parking functions
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Posets of noncrossing 2-partitions in terms of parking functions
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Posets of noncrossing 2-partitions in terms of parking functions
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Posets of noncrossing 2-partitions in terms of parking functions

VR N —~ D

123 2117 1 9 911 9
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in terms of parking function:
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Posets of noncrossing 2-partitions in terms of parking functions

VR N —~ D

123 2117 1 9 911 9
2 6 512 9 10 7 11 3 4 1 8

in terms of parking function:

-19 9 3 2 7 9111 2
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Posets of noncrossing 2-partitions in terms of parking functions

VR N —~ D

123 2117 1 9 911 9
2 6 512 9 10 7 11 3 4 1 8

in terms of parking function:

m1 9 9 3 2 7 9 1 1 1 2



Parking posets (with M. Josuat-Verges and L. Randazzo)
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@ Parking trees
o Noncrossing 2-partition poset (with M. Josuat-Vergeés and L. Randazzo)



Parking trees

Definition
A parking trec on a set L is a rooted plane tree T = (V, E, r) such that:
o Ve |_|L,

o v e V has |v| children.

Why parking ?




Bijection between noncrossing 2-partition and parking trees

&) ()
(6 12) (1) (348D — N
2910 11 > 2 6 5129 10 7 11 3 4 1 8

Coincides with noncrossing parking spaces of Armstrong—Reiner—Rhoades




Functional equation for parking trees

Proposition (DO, Josuat-Verges, Randazzo,
22)

Pr=Y Epx (1+Pf)P

p=1

xP(L+Pr)P

Pr = Z " = exp(x(1+ Pr))




Covering relation in M2 : merge parts and rearrange labels to respect the increasing condition

Y Y oD

1 23 42314

Example :







Edelman computed the zeta polynomial and Whitney number of the second kind (number of
elements by rank) in 1980 and Rhoades computed the zeta character in 2014 (section 8).

o This poset is a lattice.
o When restricting to right combs, get the face poset of the permutohedron.
o New criterion to prove shellability !

o Enumeration of (weak) k-chains, hence computation of Euler characteristic



th ch 1t X tckt )p

p=1

o Chains ¢y < --- < ¢x in N2, are in bijection with k-parking trees.
o The number of chains ¢1 < --- < ¢y in M2, where rk(¢i) = £ is:

0 (’;”) Sa(n, €+ 1).

o Hence, the Whitney number of the first kind are given by:

we(2NCP,) = (—1)0! (” * f; N 1) S(n, € +1)




The character on the unique non trivial homology group of the augmented poset is:
o (_1)nfz(cr)(n - 1)2(0)71

(up to a sign, prime parking functions !)

o The species of noncrossing 2-partitions is an operadic poset species: there is an operadic
structure on @ memax(2NCP(n)) H=3([0, m]), with a preLie operations.

o Moreover the underlying species is isomorphic to the direct sum of C, copies of the
regular representation.

o The vector space spanned by prime parking functions is a left operadic module for this
operad.




Tamari-parking posets (with M. Josuat-Verges and H. Han)
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e Tamari-parking posets (with M. Josuat-Verges and H. Han)
@ Tamari lattices
@ Tamari-parking posets



oo @©
Noncrossing 2-partitions, labelled Dyck path and parking functions

41112712



Tamari lattices [Tamari, 1951] on parking trees

Definition




Covering relations on Tamari-Parking posets







Known results and open questions

Proposition (Chapuy—Bousquet-Mélou—Préville-Ratelle, 12)

Say that two intervals in Tamari-parking posets are isomorphic if they have the same minimum
element and maximal elements of the same shape.

The number of class of isomorphisms of intervals is given by:

2"(n+1)"2,

The action of the symmetric group on these isomorphisms class of intervals are likely to be, up
to a sign, the same as the one on the space of diagonal coinvariants in three sets of n variables.



Known results and open questions

Proposition (Chapuy—Bousquet-Mélou—Préville-Ratelle, 12)

Say that two intervals in Tamari-parking posets are isomorphic if they have the same minimum
element and maximal elements of the same shape.

The number of class of isomorphisms of intervals is given by:

2"(n+1)"2,

The action of the symmetric group on these isomorphisms class of intervals are likely to be, up
to a sign, the same as the one on the space of diagonal coinvariants in three sets of n variables.

The number of intervals in the Tamari-Parking posets and augmented Tamari-Parking posets
are:

n 1123 4 5 6
TP, 52 | 855 | 19 521 | 574 498
TP, | 1]9|69 981 | 20818 | 591 306

(65




More on the topology of the Tamari-Parking poset
Conjecture (DO)

Augmented Tamari-parking posets are homotopic to a sphere.

Proposition (H. Han, 24)

Tamari-parking posets are lattices. They are neither EL-shellable nor CL-shellable.
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What to bring home
@ Poset cohomologies are fascinating.
@ They unveil new operadic structures on nice representations.

@ Don't hesitate to bring me your own favourite poset !




More on the topology of the Tamari-Parking poset
Conjecture (DO)

Augmented Tamari-parking posets are homotopic to a sphere.

Proposition (H. Han, 24)
Tamari-parking posets are lattices. They are neither EL-shellable nor CL-shellable.

Conjecture (DO)

Tamari-Parking posets are operadic poset species. Its unique cohomology group is isomorphic
to the species of lists.

What to bring home
@ Poset cohomologies are fascinating.
@ They unveil new operadic structures on nice representations.

@ Don't hesitate to bring me your own favourite poset !

Thank you for your attention !
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