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Posets(=partially ordered set) of (set) partitions ΠpV q

Partitions of a set V :

tV1, . . . ,Vku |ù V ô V “

k
ğ

i“1

Vi ,Vi X Vj “ H for i ‰ j

Partial order on set partitions of a set V :

tV1, . . . ,Vku ď tV 1
1, . . . ,V 1

pu ô @i P t1, pu, Dj P t1, ku s.t. V 1
i Ď Vj

t1ut2ut3ut4u

t1, 2ut3ut4u t1, 3ut2ut4u t1ut2, 3ut4u t1, 4ut2ut3u t1ut2, 4ut3u t1ut2ut3, 4u

t1, 2, 3ut4u t1, 2, 4ut3u t1, 2ut3, 4u t1, 3ut2, 4u t1, 3, 4ut2u t1, 4ut2, 3u t1ut2, 3, 4u

t1, 2, 3, 4u
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Order complex and cohomology of a poset

The order complex of a bounded poset, i.e. a poset with a minimum and a maximum, is the
simplicial complex whose set of faces of size k ´ 1 is

fkpPq “ tx0 ă . . . ă xk P P|x0 P minpPq, xk P maxpPqu.

The cohomology of the poset is the cohomology of its order complex.
When P is not bounded, its order complex is the order complex of the smallest bounded poset
containing P.

Results on partition poset of a set of size n

It is the intersection lattice of the braid arrangement

Its cohomology is Liepnq bSn sgnn, where Liepnq is the representation of the symmetric
group corresponding to the Lie operad and sgnn is the signature representation.

Posets of ordered partitions are the face lattice of the permutohedra

cf. ”Cellular diagonals of permutahedra”with G. Laplante-Anfossi, V. Pilaud and K. Stoeckl
(ArXiv : 2308.12119)
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Noncrossing partitions [Kreweras, 1972]

ti1, . . . , inu with i1 ă . . . ă in Ñ
i1 i2 . . . in

Definition (Kreweras, 1972)

A partition π “ tπ1, . . . , πku of t1, . . . , nu is noncrossing iff
$

’

&

’

%

a ă b ă c ă d

a, c P πi

b, d P πj

ùñ i “ j

NCn “ set of noncrossing partitions of t1, . . . , nu

a b c d

Ñ counted by Catalan numbers 1
n`1

`

2n
n

˘
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Partition posets

t1ut2ut3ut4u

t1, 2ut3ut4u t1, 3ut2ut4u t1ut2, 3ut4u t1, 4ut2ut3u t1ut2, 4ut3u t1ut2ut3, 4u

t1, 2, 3ut4u t1, 2, 4ut3u t1, 2ut3, 4u t1, 3ut2, 4u t1, 3, 4ut2u t1, 4ut2, 3u t1ut2, 3, 4u

t1, 2, 3, 4u
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Partition posets
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Noncrossing partition posets
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Noncrossing partition posets

Problem

No action of the symmetric group on this poset !
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Noncrossing 2-partitions

Definition (Edelman, 1980)

A n.c. 2-partition of size n is a pair pπ, σq P NCPn ˆ Sn s.t.

#

tb1, . . . , bku P π

b1 ă b2 ă . . . ă bk
ùñ σpb1q ă σpb2q ă . . . ă σpbkq.

2 6 5 12 9 10 7 11 3 4 1 8
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Noncrossing 2-partition poset

1 2 3

2 1 31 3 21 2 3 2 3 1 3 1 2 3 2 1

2 1 31 2 31 3 21 2 31 2 3 1 3 2 2 1 3 2 3 1 3 1 2

How many noncrossing 2-partitions are there ?

There are pn ` 1qn´1 noncrossing 2-partitions, which is the same as the number of parking
functions on n parking spots.
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Let’s drive and park !

1 2 3 4 5
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Let’s drive and park !

1 2 3 4 5

Definition

If every car can park, the word, obtained by reading from the first car entering the street to
the last one, is called a parking function.

Examples and counter-examples:

Parking functions of length n Other words of length n
1

11,12,21 22
111, 112, 121, 211, 113, 131, 311,122, 222, 333, 223, 232, 322, 233, 323, 332,
212, 221, 123, 132, 213, 231, 312, 321 133, 313, 331
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Formal definition of parking functions [Konheim-Weiss, 1966]

Definition

A sequence a “ pa1, . . . , anq P pN˚q
n is a parking function of length n iff

|ti |1 ď ai ď ju| ě j .

Denoting by aÒ the non-decreasing rearrangement of a, this is equivalent to 1 ď aj ă j for any
1 ď j ď n. We call non-decreasing parking function a parking function satisfying a “ aÒ.

Theorem (Konheim-Weiss, 1966; Pollak, 1969)

There are pn ` 1qn´1 parking functions of length n.
There are Cn “ 1

n`1

`

2n
n

˘

non-decreasing parking functions of length n.
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Parking functions and noncrossing partitions

1

Label i by minπ for i P π

Gives a parking function as the label of the jth node is smaller or equal to j .

It is the unique parking function in the orbit which maximizes the number of lucky cars.
Call it the lucky parking function (used by Blass and Sagan to compute the Möbius
function of Tamari lattices under the name ”left bracket vector”).
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Parking functions and noncrossing partitions
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Gives a parking function as the label of the jth node is smaller or equal to j .

It is the unique parking function in the orbit which maximizes the number of lucky cars.
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Posets of noncrossing 2-partitions in terms of parking functions

1 2 3 2 1 1 7 1 9 9 11 9

2 6 5 12 9 10 7 11 3 4 1 8

in terms of parking function:

- - - - - - - - - - - -
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Posets of noncrossing 2-partitions in terms of parking functions

1 2 3 2 1 1 7 1 9 9 11 9
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Posets of noncrossing 2-partitions in terms of parking functions
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Posets of noncrossing 2-partitions in terms of parking functions

1 2 3 2 1 1 7 1 9 9 11 9

2 6 5 12 9 10 7 11 3 4 1 8

in terms of parking function:

- 1 9 9 3 2 7 9 1 1 1 2



1

Posets of noncrossing 2-partitions in terms of parking functions

1 2 3 2 1 1 7 1 9 9 11 9

2 6 5 12 9 10 7 11 3 4 1 8

in terms of parking function:

11 1 9 9 3 2 7 9 1 1 1 2
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Parking functions also appear

as labellings of the shi arrangement

as labellings of maximal chains in the noncrossing partition poset

in two posets:
§ the poset of 2-noncrossing partitions [Edelman, 80]
§ the poset of Tamari-parking, linked with the study of diagonal coinvariants
[Chapuy–Bousquet-Mélou–Préville-Ratelle, 13]
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Parking trees

Definition

A parking tree on a set L is a rooted plane tree T “ pV ,E , rq such that:

V P ΠL,

v P V has |v | children.

2 9 10 11

3 4 8

1

76 12

5

Why parking ?
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Bijection between 2-noncrossing partition and parking trees

2 9 10 11

3 4 8

1

76 12

5

2 6 5 12 9 10 7 11 3 4 1 8
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Functional equation for parking trees

2 9 10 11

3 4 8

1

76 12

5

Proposition (DO, Josuat-Vergès, Randazzo,
22)

Pf “
ÿ

pě1

Ep ˆ p1 ` Pf qp

Pf “
ÿ

pě1

xpp1 ` Pf qp

p!
“ exp pxp1 ` Pf qq



2

Noncrossing 2-partitions poset

Covering relation in Π2 : merge parts and rearrange labels to respect the increasing condition

Example : 1 2 3 4 ď 2 3 1 4

A1 ∪A2

F1 Fp Fp+1 Fl Fl+1 Fn
. . . . . .. . .

A1

F1 Fp

A2

FlFp+1

Fl+1
Fn

. . .
. . .
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123

12

3

13

2

23

1

1

23

2

13

3

12

12

3

13

2

23

1

1

2

3

1

3

2

2

1

3

3

1

2

2

3

1

3

2

1
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Results

This poset is a lattice

When restricting to right combs, get the face poset of the permutohedron

New criterion to prove shellability !

Enumeration of (weak) k-chains, hence computation of Euler characteristic

1 2 5 6

4 3 7

ď
2 6

4 3 7

1 5

ď
2 6

4 7

1 53

ď
6

2

4 7

1

5

3



2

k-weak chains

1 2 5 6

4 3 7

ď
2 6

4 3 7

1 5

ď
2 6

4 7

1 53

ď
6

2

4 7

1

5

3

Proposition (DO, Josuat-Vergès, Randazzo, 22)

C l
k,t “

ÿ

pě1

C l ,p
k´1,t ˆ

`

tC l
k,t ` 1

˘p

Chains ϕ1 ď ¨ ¨ ¨ ď ϕk in Π2
n are in bijection with k-parking trees.

The number of chains ϕ1 ď ¨ ¨ ¨ ď ϕk in Π2
n where rkpϕkq “ ℓ is:

ℓ!

ˆ

kn

ℓ

˙

S2pn, ℓ ` 1q.
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k-parking tree

Definition

A k-parking tree on a set L is a rooted plane tree T “ pV ,E , rq such that:

V P ΠL

v P V has k|v | children.

12

476

5

3

12467

53

ď
127

43

6

5

ď 12

43

6

5

7
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1 2 5 6

4 3 7

ď
2 6

4 3 7

1 5

ď
2 6

4 7

1 53

ď
6

2

4 7

1

5

3

6

2

1

8

4 7

3
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Shelling

0̂

x

yy 1
y2

zz 1

y 1 _ z

1̂

Lemma (D.O., Josuat-Vergès, Randazzo, 22)

Let x , y , y 1, z P Π2
n such that x Ì y Ì z, x Ì y 1, and y 1 ăx y.

Then:

either there exists y2 P Π2
n such that x Ì y2 Ì z and

y2 ăx y,

or there exists z 1 P Π2
n such that y Ì z 1 ď y 1 _ z and

z 1 ăy z.
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Another Catalan object : Dyck paths

Definition

A Dyck path of size n is a path in Z2 from p0, 0q to pn, nq using exactly n north steps and n
east step.

1 2 1 1 5 6 7 6
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Noncrossing 2-partitions, labelled Dyck path and parking functions

2 5 8 1 3 4 6 7 .

t2, 3, 4, 7u

t5, 8u

t1u

t6u

2 3 4 7

65 8

1

41112712
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Tamari lattices on noncrossing partitions

Tamari lattices were first introduced by Tamari in 1951 in terms of rotations of a planar binary
tree. We give here an analogous definition in terms of Dyck path and noncrossing partitions.

Definition

C “

h

Ì

h

“ D
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Tamari-parking poset
Covering relations given by:

Moving a block to an arch to the left in the same part F ď F

Merging parts if their leftmost elements are adjacents F ď F

1 2 3

2 1 31 3 2 1 2 3

1 2 3 2 3 1 1 3 2

1 2 3 2 1 3 3 1 2

2 3 12 1 31 2 3 3 2 1 3 1 2 1 3 2
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Covering relations on Tamari-Parking posets

p1 . . . pk v1 . . . vℓ

Fk. . .F2RGℓ´1. . .G1

ď
p1 . . . pk

Fk. . .F2v1 . . . vℓ

RGℓ´1. . .G1

p1 . . . pk

. . .RFi

v1 . . . vℓ

Gℓ´1. . .G1

. . .

ď
p1 . . . pk

. . .v1 . . . vℓ

RGℓ´1. . .G1

Fi. . .
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Tamari-parking poset

123

23

1

12

3

13

2

12

3

23

1

13

2

1

23

2

13

3

12

2

3

1

2

1

3

1

2

3

3

2

1

3

1

2

1

3

2
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Known results and open questions

Proposition (Chapuy–Bousquet-Mélou–Préville-Ratelle, 12)

Say that two intervals in Tamari-parking posets are isomorphic if they have the same minimum
element and maximal elements of the same shape.
The number of class of isomorphisms of intervals is given by:

2npn ` 1qn´2.

The action of the symmetric group on these isomorphisms class of intervals are likely to be the
same as the one on the space of diagonal coinvariants in three sets of n variables.

Conjecture (DO)

Augmented Tamari-parking posets are homotopic to a sphere.

Proposition (H. Han)

Tamari-parking posets are lattices. They are neither EL-shellable nor CL-shellable.

Thank you for your attention !
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Parking functions and Cayley trees

pn ` 1qn´1 is also the number of Cayley trees on n ` 1 vertices (or equivalently of forest
of rooted Cayley trees on n vertices)

There are several bijections between these objects (see Yan’s survey for instance) which
enable to refine the enumeration of parking functions with statistics such as
displacements, number of lucky cars, . . .

Pollak’s bijection

Consider the Cayley tree associated with the Prüfer code pc1, . . . , cn´1q where

ci ” ai`1 ´ ai rn ` 1s

11 Ø
21

12 Ø
1

2

21 Ø
2

1

123 Ø
1

23
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Action of the symmetric group on parking functions and Cayley forests

111,

112, 121, 211,

113, 131, 311,

122, 212, 221,

123, 132, 213, 231, 312, 321.

21 3
,

1

32

,
2

31

,
3

21

,

1

2

3
,

2

1

3
,

1

3

2
,

3

1

2
,

2

3

1
,

3

2

1
,

1

2

3

,
1

3

2

,
2

1

3

,
2

3

1

,
3

1

2

,
3

2

1

.
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What are species?

Definition (Joyal, 80s; cited from Bergeron-Labelle-Leroux)

A species F is a functor from Bij to Set. To a finite set S , the species F associates a finite set
FpSq such that any bijection σ : S Ñ T gives rise to a map F pσq : F pSq Ñ F pT q satisfying

@σ : S Ñ T , τ : T Ñ U,F pτ ˝ σq “ F pτq ˝ F pσq, F pIdSq “ IdF pSq.

Species = Construction plan, such that the obtained set is invariant by relabelling
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Examples of species

tp1, 2, 3q, p1, 3, 2q, p2, 1, 3q, p2, 3, 1q, p3, 1, 2q, p3, 2, 1qu (Species of lists L on t1, 2, 3u)

tt1, 2, 3uu (Species of non-empty sets E`)

tt1u, t2u, t3uu (Species of pointed sets E‚)

"

1

2 3

, 1

2

3

, 1

3

2

, 2

1 3

, 2

1

3

, 2

3

1

, 3

1 2

, 3

1

2

, 3

2

1
*

(Species of Cayley trees T)
"

1 2

3

, 1 3

2 *

(Species of cycles)

These sets are the image by species of the set t1, 2, 3u.
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Why do we need species ?

Let F and G be two species.

pF ` G qpI q “ F pI q \ G pI q,

pF ˆ G qpI q “
Ů

I1\I2“I F pI1q ˆ G pI2q.
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Cycle index series

Definition

Given a finite set V of size n, the cycle type of a permutation σ P SV is the tuple pσ1, . . . , σnq,
where σk is the number of cycles of type k in the decomposition of σ into disjoint cycles.

Examples

The cycle type of p123qp4qp567q is p1, 0, 2, 0, 0, 0, 0q.

Definition

The cycle index series of a species F is the formal power series

ZF pp1, . . . , pn, . . .q “
ÿ

ně0

ÿ

σ

fixF pσq
pσ

zσ
, (1)

where the sum runs over a set of representatives of each cycle type of Sn, pσ “ pσ1
1 . . . pσn

n

and zσ “
ś

iě1 i
pi ˆ pi !
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Cycle index series of usual species

Definition

The cycle index series of a species F is the formal power series

ZF pp1, . . . , pn, . . .q “
ÿ

ně0

ÿ

σ

fixF pσq
pσ

zσ
, (2)

where the sum runs over a set of representatives of each cycle type of Sn, pσ “ pσ1
1 . . . pσn

n

and zσ “
ś

iě1 i
pi ˆ pi !

Examples

ZL “ 1
1´p1

,

ZE “ expp
ř

iě1
pi
i q

ZE‚ “ p1 expp
ř

iě1
pi
i q

ZT “ p1 exppZTq
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