Parking trees

(ArXiv: 2103.14468)

Bérénice Delcroix-Oger joint with M. Josuat-Vergès (IRIF) and L. Randazzo (IGM)

WACA May 2021

Outline

- 1 Set partitions, noncrossing partitions and parking functions
- 2 Parking trees and species
- Parking poset

Set partitions, noncrossing partitions and parking functions

Set partition and noncrossing partitions

Definition

A (set) partition of E is $\pi = \{\pi_1, \dots, \pi_k\}$ s.t.:

- $\pi_k \cap \pi_I \neq \emptyset \implies k = I$
- and $\bigcup_{i=1}^{k} \pi_i = E$.

 Π_F = set of partitions of E Examples:

Definition (Kreweras, 1972)

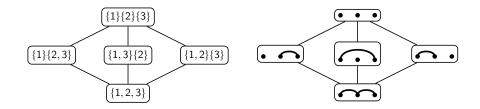
A partition $\pi = \{\pi_1, \dots, \pi_k\}$ of $\{1,\ldots,n\}$ is non-crossing iff

$$\begin{cases} a < b < c < d \\ a, c \in \pi_i \\ b, d \in \pi_j \end{cases} \implies i = j$$

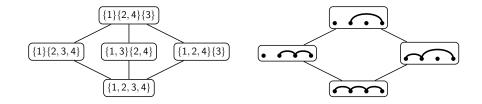
 NC_n = set of non-crossing partitions of $\{1, ..., n\}$

$$\rightarrow$$
 Catalan numbers $\frac{1}{n+1}\binom{2n}{n}$

Partitions and non-crossing partitions poset



Partitions and non-crossing partitions poset

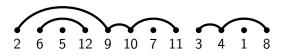


Non-crossing 2-partitions

Definition (Edelman, 1980)

A n.c. 2-partition of size n is a pair $(\pi, \sigma) \in NCP_n \times \mathfrak{S}_n$ s.t.

$$\begin{cases} \{b_1, \ldots, b_k\} \in \pi \\ b_1 < b_2 < \ldots < b_k \end{cases} \implies \sigma(b_1) < \sigma(b_2) < \ldots < \sigma(b_k).$$



2NCP poset

Covering relation in $\ensuremath{\mathbb{P}}$: rearranging labels to respect the increasing condition

Parking function [Konheim-Weiss, 1966]

Question:

How to park 6 cars in 6 parking spaces ?

Easy answer: bijection between the parking spaces and cars.

What if you pick at random for each car its place? Can all cars park?

 \rightarrow If yes, parking function !

Parking function [Konheim-Weiss, 1966]

Parking function

$$f: \{1, \dots, n\} \to \{1, \dots, n\} \text{ s.t. } \bigcup_{i=1}^{i} |f^{-1}(i)| \ge i$$

Examples & counter-example : Find the odd one out !

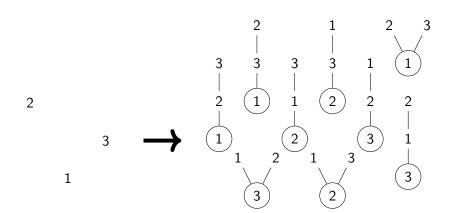
- 1
- 11, 12, 21
- 111, 112, 121, 211, 122, 212, 221, 113, 131, 311, 123, 132, 213, 231, 312, 321
- 1365247
- 4166114
- 153436
- 122333

Parking trees and species

Species [Joyal, 1980]

Definition

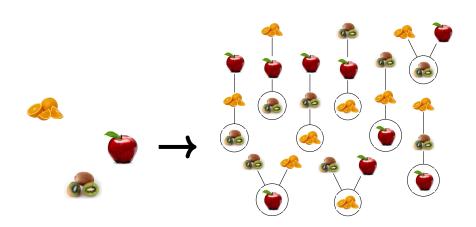
Species F : FinSet \rightarrow FinSet which associates to a fin. set I, the fin. set F(I), only depending on the cardinality of I.



Species [Joyal, 1980]

Definition

Species F : FinSet \rightarrow FinSet which associates to a fin. set I, the fin. set F(I), only depending on the cardinality of I.

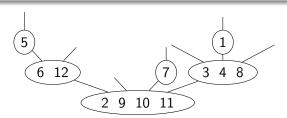


Parking trees

Definition

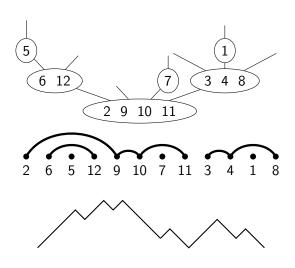
A parking tree on a set L is a rooted plane tree T = (V, E, r) such that:

- $V \in \Pi_L$,
- $v \in V$ has |v| children.



Why parking?

Bijection between 2NCP <-> parking trees



Why do we need species?

Let F and G be two species.

•
$$(F + G)(I) = F(I) \sqcup G(I)$$
,

$$\bullet (F \times G)(I) = \bigsqcup_{I_1 \sqcup I_2 = I} F(I_1) \times G(I_2).$$

Definition

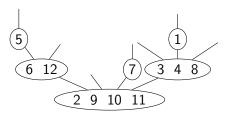
The cycle index series of a species F is the formal power series in an infinite number of variables $\mathfrak{p}=(p_1,p_2,p_3,\ldots)$ defined by:

$$Z_F(\mathfrak{p}) = \sum_{n \geqslant 0} \frac{1}{n!} \left(\sum_{\sigma \in \mathfrak{S}_n} F^{\sigma} p_1^{\sigma_1} p_2^{\sigma_2} p_3^{\sigma_3} \dots \right),$$

- with $F^{\sigma} = |\{x \in F(\{1,\ldots,n\}) | \sigma \cdot x = x\}|$
- and σ has σ_i cycles of length i.

Example:

Back to parking trees

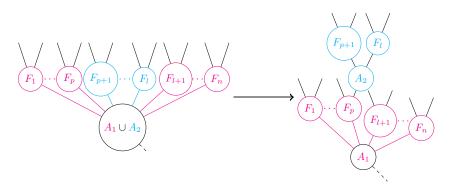


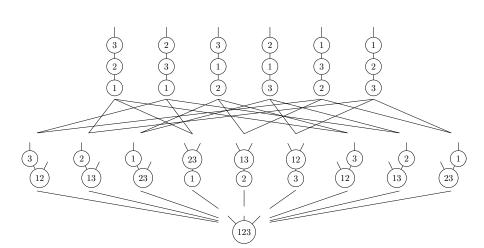
Proposition (DO, Josuat-Vergès, Randazzo, 20+)

$$\mathcal{P}_f = \sum_{p\geqslant 1} \mathcal{E}_p \times (1+\mathcal{P}_f)^p$$

Parking poset

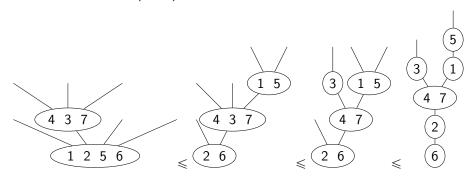
Order on parking trees



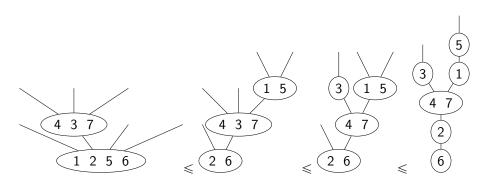


Results

- This poset is a lattice
- When restricting right combs, get the face poset of the permutohedron
- New criterion to prove shellability !
- Enumeration of (weak) k-chains



k-weak chains



$$\mathcal{C}_{k,t}^{l} = \sum_{p \geqslant 1} \mathcal{C}_{k-1,t}^{l,p} \times \left(t\mathcal{C}_{k,t}^{l} + 1\right)^{p},$$

k-weak chains

Proposition (DO, Josuat-Vergès, Randazzo, 20+)

Chains $\phi_1 \leqslant \cdots \leqslant \phi_k$ in \mathbb{F}_n are in bijection with k-parking trees. The number of chains $\phi_1 \leqslant \cdots \leqslant \phi_k$ in \mathbb{F}_n where $\operatorname{rk}(\phi_k) = \ell$ is:

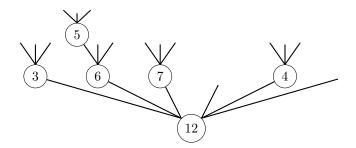
$$\ell! \binom{kn}{\ell} S_2(n,\ell+1).$$

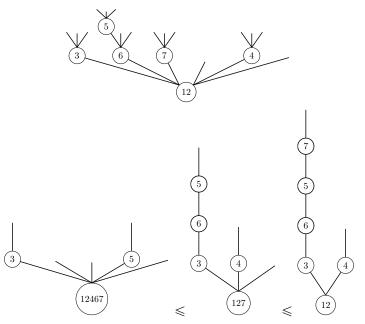
k-parking tree

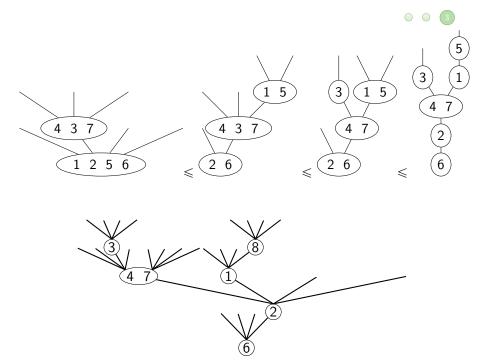
Definition

A k-parking tree on a set L is a rooted plane tree T = (V, E, r) such that:

- $V \in \Pi_L$
- $v \in V$ has k|v| children.







Proposition (DO, Josuat-Vergès, Randazzo, 20+)

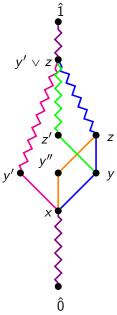
Chains $\phi_1 \leqslant \cdots \leqslant \phi_k$ in \mathbb{F}_n are in bijection with k-parking trees. The number of chains $\phi_1 \leqslant \cdots \leqslant \phi_k$ in \mathbb{F}_n where $\operatorname{rk}(\phi_k) = \ell$ is:

$$\ell! \binom{kn}{\ell} S_2(n,\ell+1).$$

Thank you!

$\circ \circ 3$

Shelling



Lemma

Let $x, y, y', z \in \mathbb{N}_n$ such that $x \lessdot y \lessdot z, x \lessdot y'$, and $y' \lessdot_x y$. Then:

- either there exists $y'' \in \mathbb{P}|_n$ such that $x \lessdot y'' \lessdot z$ and $y'' \lessdot_x y$,
- or there exists $z' \in \mathbb{P}_n$ such that $y \lessdot z' \leqslant y' \lor z$ and $z' \lessdot_v z$.