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Motivation : PΣn

Fn generated by (xi )
n
i=1

PΣn, pure symmetric automorphism group

I group of automorphisms of Fn which send each xi to a conjugate of
itself,

I group of motions of a collection of n coloured unknotted, unlinked
circles in 3-space.

It seems that their cohomology groups are not Koszul (A. Conner and
P. Goetz).
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Use of the hypertree poset for the computation of the l2-Betti
numbers of PΣn by C. Jensen, J. McCammond and J. Meier.

Action of PΣn on a contractible complex MMn defined by
McCullough and Miller in 1996 in terms of marking of hypertrees,
whose fundamental domain is the hypertree poset on n vertices,

PΣn . Inn(Fn) => OPΣn = PΣn/Inn(Fn)

OPΣn acts cocompactly on MMn

Use of a theorem by Davis, Januszkiewicz and Leary to obtain the
expression of l2-cohomology of the group in term of the cohomology
of the fundamental domain of the complex.
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Hypergraphs and hypertrees

Definition ([Ber89])

A hypergraph (on a set V ) is an ordered pair (V ,E ) where:

V is a finite set (vertices)

E is a collection of subsets of cardinality at least two of elements of
V (edges).

Example of a hypergraph on [1; 7]

A

B

C
D

4

7 6

5

1

2

3
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Walk on a hypergraph

Definition

Let H = (V ,E ) be a hypergraph.
A walk from a vertex or an edge d to a vertex or an edge f in H is an
alternating sequence of vertices and edges beginning by d and ending by f :

(d , . . . , ei , vi , ei+1, . . . , f )

where for all i , vi ∈ V , ei ∈ E and {vi , vi+1} ⊆ ei .
The length of a walk is the number of edges and vertices in the walk.

Examples of walks

A

B

C
D

4

7 6

5

1

2

3

A

B

C
D

4

7 6

5

1

2

3

Bérénice Oger (ICJ -Lyon) From PΣn to the homology of HTn January, 10th 2014 7 / 36



Hypertrees

Definition

A hypertree is a non-empty hypergraph H such that, given any distinct
vertices v and w in H,

there exists a walk from v to w in H with distinct edges ei , (H is
connected),

and this walk is unique, (H has no cycles).

Example of a hypertree

4

1 2

3 5

6 7
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The hypertree poset

Definition

Let I be a finite set of cardinality n, S and T be two hypertrees on I .

S � T ⇐⇒ Each edge of S is the union of edges of T

We write S ≺ T if S � T but S 6= T .

Example with hypertrees on four vertices

♠

♦ ♥

♣
�

♠

♦ ♥

♣ ♠

♦ ♥

♣ ♠

♦ ♥

♣ but not ♠

♦ ♥

♣ .
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Graded poset by the number of edges [McCullough and Miller 1996],

There is a unique minimum 0̂,

HT(I) = hypertree poset on I ,

HTn = hypertree poset on n vertices.

Möbius number : (n − 1)n−2 [McCammond and Meier 2004]

Goal:

New computation of the homology dimension

Computation of the action of the symmetric group on the homology
(Conjecture of Chapoton 2007)
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Homology of the poset
To every poset P, one can associate a simplicial complex (nerve of the
poset seen as a category) whose

vertices are elements of P,
faces are the chains of P.

Definition

A strict k-chain of hypertrees on I is a k-tuple (a1, . . . , ak), where ai are
hypertrees on I different from the minimum 0̂ and ai ≺ ai+1.

Let Ck be the vector space generated by strict k-chains. We define
C−1 = C.e. We define the following linear map on the set (Ck)k≥−1:

∂k(a1 ≺ . . . ≺ ak+1) =
k∑

i=1

(−1)i (a1 ≺ . . . ≺ âi ≺ . . . ≺ ak),

(a1 ≺ . . . ≺ ak+1) ∈ Ck .
The homology is defined by:

H̃j = ker∂j/im∂j+1.
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Theorem ([MM04])

The homology of ĤTn is concentrated in maximal degree (n − 3).

Corollary

The character for the action of the symmetric group on H̃n−3 is given in
terms of characters for the action of the symmetric group on Ck by:

χH̃n−3
= (−1)n−3

n−3∑
k=−1

(−1)kχCk
, where n = #I .
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What are species?

Definition

A species F is a functor from the category of finite sets and bijections to
itself. To a finite set I , the species F associates a finite set F(I )
independent from the nature of I .

Counterexamples

The following sets are not obtained using species:

{(1, 3, 2), (2, 1, 3), (2, 3, 1)(3, 1, 2)}(set of permutations of {1, 2, 3}
with exactly 1 descent)

(graph of divisibility of {1, 2, 3, 4, 5, 6})

1

2

3

4

5 6
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Examples of species

{(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)} (Species of lists
Assoc on {1, 2, 3})
{{1, 2, 3}} (Species of non-empty sets Comm)

{{1}, {2}, {3}} (Species of pointed sets Perm)

{
1

2 3

, 1

2

3

, 1

3

2

, 2

1 3

, 2

1

3

, 2

3

1

, 3

1 2

, 3

1

2

, 3

2

1 }
(Species of

rooted trees PreLie){
1 2

3

, 1 3

2 }
(Species of cycles)

These sets are the image by species of the set {1, 2, 3}.
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Examples of species

{(♥,♠,♣), (♥,♣,♠), (♠,♥,♣), (♠,♣,♥), (♣,♥,♠), (♣,♠,♥)}
(Species of lists Assoc on {♣,♥,♠})
{{♥,♠,♣}} (Species of non-empty sets Comm)

{{♥}, {♠}, {♣}} (Species of pointed sets Perm)

{
♥

♠ ♣
, ♥
♠
♣

, ♥
♣
♠

, ♠
♥ ♣

, ♠
♥
♣

, ♠
♣
♥

, ♣
♥ ♠

, ♣
♥
♠

, ♣
♠
♥ }

(Species of
rooted trees PreLie){
♥ ♠

♣

, ♥ ♣

♠ }
(Species of cycles)

These sets are the image by species of the set {♣,♥,♠}.
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Operations on species and associated series

Proposition

Let F and G be two species. The following operations can be defined on
them:

F ′(I ) = F (I t {•}), (derivative)

(F + G )(I ) = F (I ) t G (I ), (addition)

(F × G )(I ) =
∑

I1tI2=I F (I1)× G (I2), (product)

(F ◦ G )(I ) =
⊔
π∈P(I ) F (π)×

∏
J∈π G (J), (substitution) where P(I )

runs on the set of partitions of I .
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�
♥ ♠

♣ •
' ♥♠ ♣

,

�
♥

♠ ♣

•
' ♥ ♠♣
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Operations on species and associated series

Proposition

Let F and G be two species. The following operations can be defined on
them:

F ′(I ) = F (I t {•}), (derivative)

(F + G )(I ) = F (I ) t G (I ), (addition)

(F × G )(I ) =
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I1tI2=I F (I1)× G (I2), (product)

(F ◦ G )(I ) =
⊔
π∈P(I ) F (π)×

∏
J∈π G (J), (substitution) where P(I )

runs on the set of partitions of I .

Example of substitution: Rooted trees of lists on I = {1, 2, 3, 4}

(1)

(2, 4, 3)

,
(1)

(4, 3, 2)

,
(4, 2, 3)

(1)

,
(1, 2)

(3, 4)

,
(4, 1)

(2)(3)

, . . .
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Definition

To a species F , we associate its generating series:

CF (x) =
∑
n≥0

#F ({1, . . . , n})xn

n!
.

Examples of generating series:

The generating series of the species of lists is CAssoc = 1
1−x .

The generating series of the species of non-empty sets is
CComm = exp(x)− 1.

The generating series of the species of pointed sets is
CPerm = x · exp(x).

The generating series of the species of rooted trees is
CPreLie =

∑
n≥0 nn−1 xn

n! .

The generating series of the species of cycles is CCycles = − ln(1− x).
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Definition

The cycle index series of a species F is the formal power series in an
infinite number of variables p = (p1, p2, p3, . . .) defined by:

ZF (p) =
∑
n≥0

1

n!

∑
σ∈Sn

Fσpσ1
1 pσ2

2 pσ3
3 . . .

 ,
with Fσ, is the set of F -structures fixed under the action of σ,

and σi , the number of cycles of length i in the decomposition of σ
into disjoint cycles.

Examples

The cycle index series of the species of lists is ZAssoc = 1
1−p1

.

The cycle index series of the species of non empty sets is
ZComm = exp(

∑
k≥1

pk
k )− 1.
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Operations on cycle index series

Operations on species give operations on their cycle index series:

Proposition

Let F and G be two species. Their cycle index series satisfy:

ZF+G = ZF + ZG , ZF×G = ZF × ZG ,

ZF◦G = ZF ◦ ZG , ZF ′ = ∂ZF
∂p1

.

Definition

The suspension Σ of a cycle index series f (p1, p2, p3, . . .) is defined by:

Σf = −f (−p1,−p2,−p3, . . .).
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Counting strict chains using large chains
Let I be a finite set of cardinality n.

Definition

A large k-chain of hypertrees on I is a k-tuple (a1, . . . , ak), where ai are
hypertrees on I and ai � ai+1.

Let Mk,s be the set of words on {0, 1} of length k, with s letters ”1”. The
species Mk,s is defined by:{

∅ 7→ Mk,s ,
V 6= ∅ 7→ ∅.

Proposition

The species Hk of large k-chains and HS i of strict i-chains are related by:

Hk
∼=
∑
i≥0

HS i ×Mk,i .
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Proposition

The species Hk of large k-chains and HS i of strict i-chains are related by:

Hk
∼=
∑
i≥0

HS i ×Mk,i .

Proof.

(a1, . . . , ak)

(aj1 , . . . , aji )

(u1, . . . , uk)

Deletion of repetitions

uj = 0 if aj = aj−1, 1 otherwise
with a0 = 0̂.
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The previous proposition gives, for all integer k > 0:

χk =
n−2∑
i=0

(
k

i

)
χs
i .

χk is a polynomial P(k) in k which gives, once evaluated in −1, the
character:

Corollary

χH̃n−3
= (−1)nP(−1) =: (−1)nχ−1

The hypertrees will now be on n vertices.

Bérénice Oger (ICJ -Lyon) From PΣn to the homology of HTn January, 10th 2014 23 / 36



The previous proposition gives, for all integer k > 0:

χk =
n−2∑
i=0

(
k

i

)
χs
i .

χk is a polynomial P(k) in k which gives, once evaluated in −1, the
character:

Corollary

χH̃n−3
= (−1)nP(−1) =: (−1)nχ−1

The hypertrees will now be on n vertices.

Bérénice Oger (ICJ -Lyon) From PΣn to the homology of HTn January, 10th 2014 23 / 36



Pointed hypertrees

Definition

Let H be a hypertree on I . H is:

rooted in a vertex s if the vertex s of H is distinguished,

edge-pointed in an edge a if the edge a of H is distinguished,

rooted edge-pointed in a vertex s in an edge a if the edge a of H and
a vertex s of a are distinguished.

Example of pointed hypertrees

9

8 2

1

3

4

6

5

7 6

5 1

3

2

4

7

6

5 1

3

2

4

7
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Proposition: Dissymmetry principle

The species of hypertrees and of rooted hypertrees are related by:

H+Hpa = Hp +Ha.

We write:

Hk , the species of large k-chains of hypertrees,

Hpa
k , the species of large k-chains of hypertrees whose minimum is

rooted edge-pointed,

Hp
k , the species of large k-chains of hypertrees whose minimum is

rooted,

Ha
k , the species of large k-chains of hypertrees whose minimum is

edge-pointed.

Corollary ([Oge13])

The species of large k-chains of hypertrees are related by:

Hk +Hpa
k = Hp

k +Ha
k .
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Last but not least type of hypertrees

Definition

A hollow hypertree on n vertices (n ≥ 2) is a hypertree on the set
{#, 1, . . . , n}, such that the vertex labelled by #, called the gap, belongs
to one and only one edge.

Example of a hollow hypertree

5

2

1

3

4

6

# 8

7

We denote by Hc
k , the species of large k-chains of hypertrees whose

minimum is a hollow hypertree.
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Relations between species of hypertrees

Theorem

The species Hk , Hp
k and Hc

k satisfy:

Hp
k = X ×H′k (1)

Hp
k = X × Comm ◦Hc

k + X , (2)

Hc
k = Comm ◦Hc

k−1 ◦ H
p
k , (3)

Ha
k = (Hk−1 − x) ◦ Hp

k , (4)

Hpa
k =

(
Hp

k−1 − x
)
◦ Hp

k . (5)

Proof.
1 Rooting a species F is the same as multiplying the singleton species X

by the derivative of F,
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Second part of the proof.

We separate the root and every edge containing it, putting gaps where the
root was,

Hp
k = X × Comm ◦Hc

k + X ,
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and End!
3 Hollow case:

Hc
k = Hcm

k ◦ H
p
k , (6)

Hcm
k = Comm ◦Hc

k−1. (7)
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Dimension of the homology

Proposition

The generating series of the species Hk , Hp
k and Hc

k satisfy:

Cpk = x · exp

(
Cpk−1 ◦ C

p
k

Cpk
− 1

)
, (8)

Cak = (Ck−1 − x)(Cpk ), (9)

Cpak = (Cpk−1 − x)(Cpk ), (10)

x · C′k = Cpk , (11)

Ck + Cpak = Cpk + Cak . (12)
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Lemma

The generating series of H0 and Hp
0 are given by:

C0 =
∑
n≥1

xn

n!
= ex − 1,

Cp0 = xex .

This implies with the previous theorem:

Theorem ([MM04])

The dimension of the only homology group of the hypertree poset is
(n − 1)n−2.

This dimension is the dimension of the vector space PreLie(n-1) whose
basis is the set of rooted trees on n − 1 vertices.
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From the hypertree poset to rooted trees

1 This dimension is the dimension of the vector space PreLie(n-1)
whose basis is the set of rooted trees on n − 1 vertices.
The operad (a species with more properties on substitution) whose
vector space are PreLie(n) is PreLie.

2 This operad is anticyclic ([Cha05]): There is an action of the
symmetric group Sn on PreLie(n− 1) which extends the one of Sn−1.

3 Moreover, there is an action of Sn on the homology of the poset of
hypertrees on n vertices.

Question

Is the action of Sn on PreLie(n-1) the same as the action on the
homology of the poset of hypertrees on n vertices?

Bérénice Oger (ICJ -Lyon) From PΣn to the homology of HTn January, 10th 2014 32 / 36



Character for the action of the symmetric group on the
homology of the poset

Using relations on species established previously, we obtain:

Proposition

The series Zk , Zp
k , Z a

k and Zpa
k satisfy the following relations:

Zk + Zpa
k = Zp

k + Z a
k , (13)

Zp
k = p1 + p1 × Comm ◦

(
Zp
k−1 ◦ Zp

k − Zp
k

Zp
k

)
, (14)

Z a
k + Zp

k = Zk−1 ◦ Zp
k , (15)

Zpa
k + Zp

k = Zp
k−1 ◦ Zp

k , and p1
∂Zk

∂p1
= Zp

k . (16)
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Theorem ([Oge13], conjecture of [Cha07])

The cycle index series Z−1, which gives the character for the action of Sn

on H̃n−3, is linked with the cycle index series M associated with the
anticyclic structure of PreLie by:

Z−1 = p1 − ΣM = Comm ◦Σ PreLie +p1 (Σ PreLie +1) . (17)

The cycle index series Zp
−1 is given by:

Zp
−1 = p1 (Σ PreLie +1) . (18)

Proof.

Sketch of the proof

1 Computation of Z0 = Comm and Zp
0 = Perm = p1 + p1 × Comm

2 Replaced in the formula giving Zp
0 in terms of itself and Zp

−1

Zp
0 = p1 + p1 × Comm ◦

(
Zp
−1 ◦ Zp

0 − Zp
0

Zp
0

)
,
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Second part of the proof.

3 As Σ PreLie ◦Perm = Perm ◦Σ PreLie = p1, according to [Cha07], we
get:

Zp
−1 = p1 (Σ PreLie +1) .

4 The dissymetry principle associated with the expressions gives:

Comm +Zp
−1 ◦ Perm−Perm = Perm +Z−1 ◦ Perm−Perm .

5 Thanks to equation [Cha05, equation 50], we conclude:

ΣM − 1 = −p1(−1 + Σ PreLie +
1

Σ PreLie
).
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Thank you for your attention !

[Oge13] Bérénice Oger Action of the symmetric groups on the homology
of the hypertree posets. Journal of Algebraic Combinatorics, february
2013.
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Eccentricity

Definition

The eccentricity of a vertex or an edge is the maximal number of vertices
on a walk without repetition to another vertex.
The center of a hypertree is the vertex or the edge with minimal
eccentricity.

Example of eccentricity

9

8 2

1

3

4

6

5

7
e = 7

e = 6

e = 5

e = 4

9

8

2

1

3

4

6

5

7

e = 9

e = 8

e = 7

e = 6

e = 5

Bérénice Oger (ICJ -Lyon) From PΣn to the homology of HTn January, 10th 2014 39 / 36


	The hypertree poset
	Hypertrees
	Hypertree poset
	Homology of the hypertree poset

	Computation of the homology of the hypertree poset
	Species
	Counting strict chains using large chains
	Pointed hypertrees
	Relations between chains of hypertrees
	Dimension of the homology

	From the hypertree poset to rooted trees
	PreLie species
	Character for the action of the symmetric group on the homology of the poset

	Appendix

