A spoonful of dendrology: from hypertrees to Cayley trees

Bérénice Delcroix-Oger joint work with Clément Dupont (IMAG, Université de Montpellier)

Université Université Paris Cité

Algebraic Combinatorics of the Symmetric Groups and Coxeter Groups II Cetraro, July 2022

Outline

2 Action of the symmetric group on this poset

From hypertrees to n^{n-1}

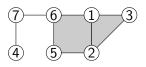
Outline

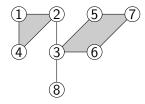
1 From hypertrees to n^{n-1}

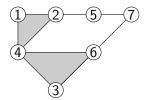
- Hypertree poset
- Homology of the hypertree posets
- From hypertrees to Cayley trees

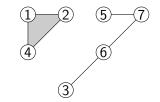
Action of the symmetric group on this poset

Hypergraphs [Berge, 80s] and hypertrees









The hypertree poset

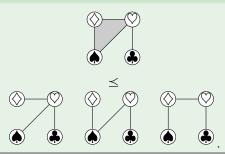
Definition

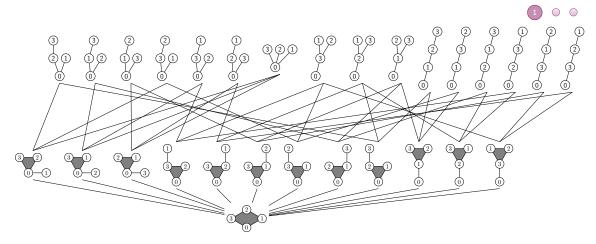
Let I be a finite set of cardinality n, S and T be two hypertrees on I.

 $S \leq T \iff$ Each edge of S is the union of edges of T

We write S < T if $S \leq T$ but $S \neq T$.

Example with hypertrees on four vertices





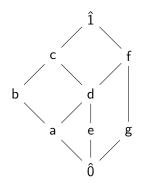
- $HT_n = hypertree poset on [0, n].$
- \widehat{HT}_n = augmented hypertree poset on $[\mathbf{0}, n]$.

Goal of this section:

• Compute of the action of the symmetric group on the homology of this poset

Homology of the poset

To each poset, we can associate a simplicial complex (order complex).



The homology of the poset is the (reduced) homology of this simplicial complex (topological invariant).

Theorem (McCammond-Meier, 04)

The homology of \widehat{HT}_n and HT_n are concentrated in maximal degree n-2 and n-3 respectively.

Corollary

The character for the action of the symmetric group on \tilde{H}_{n-3} is given in terms of characters for the action of the symmetric group on C_k by:

$$\chi_{\tilde{H}_{n-3}} = (-1)^{n-3} \sum_{k=-1}^{n-3} (-1)^k \chi_{C_k}, \text{ where } n = \#I,$$

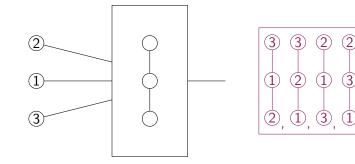
where C_k is the vector space spanned by k + 1-tuples (a_0, \ldots, a_k) with $a_i < a_{i+1}$.

What are species?

Definition (Joyal, 80s)

A species F is a functor from the category of finite sets and bijections to itself. To a finite set I, the species F associates a finite set F(I) independent from the nature of I.

Species = Construction plan, such that the set obtained is invariant by relabelling



Examples of species

2

• $\{(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1)\}$ (Species of lists \mathbb{L} on $\{1,2,3\}$)

3

3

(Species of cycles)

- $\{\{1,2,3\}\}$ (species of non-empty sets \mathbb{E}^+)
- $\{\{1\},\{2\},\{3\}\}$ (species of pointed sets \mathbb{E}^{\bullet})

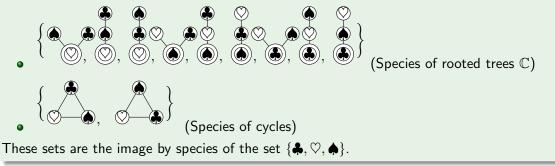
(Species of Cayley trees \mathbb{C})

These sets are the image by species of the set $\{1, 2, 3\}$.

$\bigcirc \bigcirc \bigcirc \bigcirc$

Examples of species

- $\{(\heartsuit, \clubsuit, \clubsuit), (\heartsuit, \clubsuit, \bigstar), (\clubsuit, \heartsuit, \clubsuit), (\clubsuit, \clubsuit, \heartsuit), (\clubsuit, \heartsuit, \clubsuit), (\clubsuit, \clubsuit, \heartsuit)\}$ (Species of lists \mathbb{L} on $\{\clubsuit, \heartsuit, \clubsuit\}$)
- $\{\{\heartsuit, \diamondsuit, \clubsuit\}\}\$ (Species of non-empty sets \mathbb{E}^+)
- $\{\{\heartsuit\}, \{\clubsuit\}, \{\clubsuit\}\}\}$ (Species of pointed sets \mathbb{E}^{\bullet})



Operations on species and generating series

Proposition

Let F and G be two species. Let us define:

$$(F + G)(I) = F(I) \sqcup G(I),$$

$$(F \times G)(I) = \bigsqcup_{I_1 \sqcup I_2 = I} F(I_1) \times G(I_2),$$

$$(F \circ G)(I) = \bigsqcup_{\pi \in \mathcal{P}(I)} F(\pi) \times \prod_{J \in \pi} G(J),$$

where $\mathcal{P}(I)$ runs on the set of partitions of I.

Definition

To a species F, we associate its generating series:

$$C_F(x) = \sum_{n \ge 0} \#F(\{1,\ldots,n\}) \frac{x^n}{n!}.$$

Examples of generating series:

- The generating series of the species of lists is $C_{\mathbb{L}} = \frac{1}{1-x}$.
- The generating series of the species of non-empty sets is $C_{\mathbb{E}^+} = \exp(x) 1$.
- The generating series of the species of pointed sets is $C_{\mathbb{E}^{\bullet}} = x \cdot \exp(x)$.
- The generating series of the species of rooted trees is $C_{\mathbb{C}} = \sum_{n \ge 0} n^{n-1} \frac{x^n}{n!}$.
- The generating series of the species of cycles is $C_{Cycles} = -\ln(1-x)$.

Counting strict chains using large chains

Let I be a finite set of cardinality n.

Definition

A large k-chain of hypertrees on I is a k-tuple (a_1, \ldots, a_k) , where a_i are hypertrees on I and $a_i \leq a_{i+1}$.

We get, for all integer k > 0:

$$\chi_k = \sum_{i=0}^{n-2} \binom{k}{i} \chi_{C_i}.$$

 χ_k is a polynomial P(k) in k which gives, once evaluated in -1, the character:

Corollary

$$\chi_{\tilde{H}_{n-2}(\widehat{\mathsf{HT}_n})} = (-1)^n P(-1) =: (-1)^n \chi_{-1}$$

From hypertrees to Cayley trees

We denote by:

- *H*⁰_k, the species which associated to any finite set V the set of large k-chains of hypertrees on {0} ∪ V,
- \mathcal{H}_k^p , the species which associated to any finite set V the set of large k-chains of rooted hypertrees on V.

Theorem (BO, 2013)

The species \mathcal{H}_k^0 and \mathcal{H}_k^p satisfy:

$$\mathcal{H}_{k}^{p} = X \times \left(\mathcal{H}_{k}^{0} + 1\right)$$

 $\mathcal{H}_{k}^{0} = \mathbb{E}^{+} \circ \mathcal{H}_{k-1}^{0} \circ \mathcal{H}_{k}^{p}$

Proof

Dimension of the homology

Proposition

The generating series of the species \mathcal{H}_k^0 satisfies:

$$\begin{split} \mathcal{C}_{k}^{0} &= \exp\left(\mathcal{C}_{k-1}^{0} \circ \left(x\left(\mathcal{C}_{k}^{0}+1\right)\right)\right) - 1, \\ \mathcal{C}_{1}^{0} &= \exp\left(\exp\left(x\left(\mathcal{C}_{1}^{0}+1\right)\right) - 1\right) - 1 \end{split}$$

We thus get:

Theorem (adapted from [McCammond-Meier, 04])

The dimension of the unique homology group of the augmented hypertree poset is n^{n-1} .

Question:

Is it also the same action of the symmetric group ?

Action of the symmetric group on this poset

Outline

From hypertrees to n^{n-1}

2 Action of the symmetric group on this poset

- Cycle index series
- What is an operad ?
- Back to posets

Definition

The cycle index series of a species F of a species F is the formal power series in an infinite number of variables $\mathfrak{p} = (p_1, p_2, p_3, ...)$ defined by:

$$Z_{\mathcal{F}}(\mathfrak{p}) = \sum_{n \geq 0} \frac{1}{n!} \left(\sum_{\sigma \in \mathfrak{S}_n} \mathcal{F}^{\sigma} p_1^{\sigma_1} p_2^{\sigma_2} p_3^{\sigma_3} \dots \right),$$

• with F^{σ} , is the set of *F*-structures fixed under the action of σ ,

• and σ_i , the number of cycles of length *i* in the decomposition of σ into disjoint cycles.

Examples

- The cycle index series of the species of lists is $Z_{\mathbb{L}} = \frac{1}{1-\rho_1}$.
- The cycle index series of the species of non empty sets is $Z_{\mathbb{E}^+} = \exp(\sum_{k \ge 1} \frac{p_k}{k}) 1$.

Operations on species give operations on their cycle index series:

Proposition

Let F and G be two species. Their cycle index series satisfy:

$$Z_{F+G} = Z_F + Z_G, \quad Z_{F\times G} = Z_F \times Z_G, \quad Z_{F \circ G} = Z_F \circ Z_G.$$

Definition

The suspension Σ_t of a cycle index series $f(p_1, p_2, p_3, ...)$ is defined by:

 $\Sigma f = -f(-p_1, -p_2, -p_3, \ldots).$

0 2 0

Theorem (BO, 13; conjecture of [Chapoton, 05])

The cycle index series Z_{-1}^0 , which gives the character for the action of \mathfrak{S}_n on \tilde{H}_{n-2} , is given by:

$$Z_{-1}^0 = \Sigma \mathbb{C}$$
$$= \Sigma \operatorname{PreLie}.$$

Let us draw the parallel with partition posets !

Theorem (Stanley 82, Hanlon 81, Joyal 85)

The cycle index series which gives the character for the action of \mathfrak{S}_n on $\tilde{H}_{n-1}(\Pi_n)$, is given by Σ Lie.

Link with operads [Fresse 04] !

What is an operad ?

An operad is a vector species \mathcal{F} (i.e. species with values in finite vector spaces) endowed with an associative product

$$\pi:\mathcal{F}\circ\mathcal{F}\to\mathcal{F}$$

and a unit.

Why do we care about operads ?

To any (algebraic) operad can be associated a type of algebras. Proving properties on operads (such as Koszulness) help proving them for algebras.

Some Lie operads

Operads map a set V to a quotient of a vector space spanned by planar trees whose internal nodes are decorated by products and whose leaves are labelled by V. The composition is given by the grafting on the leaves.

- Lie generated by a binary product [.;.] with relations Jacobi+anti-symmetry
- pre-Lie generated by a binary product ∽ with the pre-Lie relation

$$(x \backsim y) \backsim z - x \backsim (y \backsim z) = (x \backsim z) \backsim y - x \backsim (z \backsim y)$$

(basis given by Cayley trees)

• post-Lie generated by two binary products [.;.] and \triangleleft such that [.;.] Lie bracket and

$$(x \lhd y) \lhd z - x \lhd (y \lhd z) - (x \lhd z) \lhd y + x \lhd (z \lhd y) = 0$$
$$[x, y] \lhd z = [x \lhd z, y] + [x, y \lhd z]$$

(basis given by Lie brackets of planar binary trees)

Partition posets [Fresse 04]

Minimal building set = partition with only one part of size > 2

Nested sets of the poset Π_k : $\mathcal{NS}(\Pi_k)$ = set of trees with leaves decorated by a partition of $\{1, \ldots, k\}$

Lemma

Given a partition $\pi = \{\pi_1, \dots, \pi_k\}$, $[\hat{0}, \pi] \simeq \Pi_k, \qquad [\pi, \hat{1}] \simeq \prod_{i=1}^k \Pi_{|\pi_i|}$

Get an operad by grafting !

0 2 0

Back to the hypertree posets

1,3

We consider the poset HT_n (and not \widehat{HT}_n).

Lemma (Dupont-BDO 22+)

The Möbius number of HT_n is given by $\frac{(2n-1)!}{n!} = \sum_{\tau \in C(n)} \prod_{\nu \in V(\tau)} (\deg(\nu) - 1)!$.

A006963 Number of planar embedded labeled trees with n nodes: (2n-3)!/(n-1)! for n ²³ >= 2, a(1) = 1. (Formerly M3076)

1, 1, 3, 20, 210, 3024, 55440, 1235520, 32432400, 980179200, 33522128640, 1279935820800, 53970627110400, 2490952020480000, 124903451312640000, 6761440164390912000, 393008709555221760000, 24412776311194951680000, 1613955767240110694400000 (list; graph; refs; listen; history; text; internal format)

OFFSET

- COMMENTS For n>1: central terms of the triangle in <u>A173333</u>; cf. <u>A001761</u>, <u>A001813</u>. -<u>Reinhard Zumkeller</u>, Feb 19 2010
 - Can be obtained from the Vandermonde permanent of the first n positive integers; see <u>A093883</u>. <u>Clark Kimberling</u>, Jan 02 2012

All trees can be embedded in the plane, but "planar embedded" means that orientation matters but rotation doesn't. For example, the n-star with n-1 edges has n! ways to label it, but rotation removes a factor of n-1. Another example, the n-path has n! ways to label it, but rotation removes a factor of 2. -<u>Michael Somos</u>, Aug 19 2014

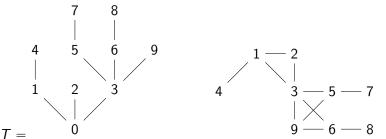
REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic

Hypertree posets and post-Lie operad

Minimal building set : Hypertrees with only one edge of cardinality > 2

Nested sets : pairs (T, N) where T is a tree and N is a tubing of its adjacency graph or equivalently doubled trees



Composition of doubled trees

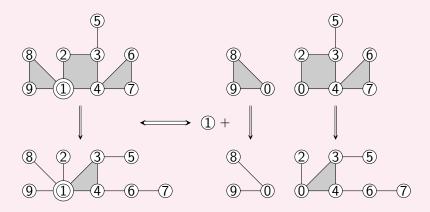
Theorem (Dupont-BDO,22+)

It is possible to define a (dg-) operad on the nested sets of the hypertree posets and it induces on the homology an operad which is (the suspension of the) post-Lie operad. Thank you for your attention !

Proof of the first equation.

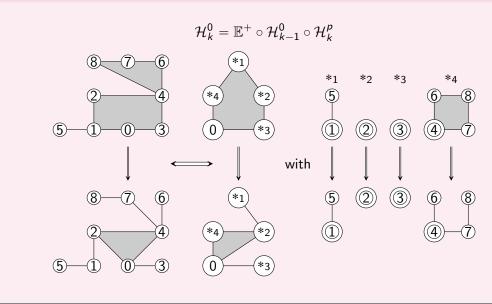
We separate the root and every edge containing it, putting $\{0\}$ where the root was,

$$\mathcal{H}_k^p = X \times \mathcal{H}_k^0 + X,$$



and of the second one!

3



Retour